Effect of Different Rolling/Crimping Directions and Row Cleaners for Cereal Rye Cover Crop on Cotton Growth in a Conservation System

2018 ◽  
Vol 61 (6) ◽  
pp. 1845-1855
Author(s):  
Ted S. Kornecki

Abstract. Cover crops have been recognized as a vital part of conservation agriculture, but they need to be managed appropriately to avoid planting problems related to the large amounts of biomass. Typically, cover crops are rolled in the same direction as the travel direction of the planter, but producers have been inquiring if other rolling directions are also effective. To answer this question, replicated field experiments (split-plot design) were conducted at two locations in Alabama during three growing seasons to evaluate different rolling directions of a cereal rye cover crop, i.e., non-rolled (standing rye), 0° (cotton planting direction), 180° (opposite of planting direction), 15° (offset from 0°), and 195° (15° offset from 180°), using a roller/crimper. A no-till cotton planter with different row cleaners, i.e., a commercially available row cleaner (Dawn with coulter), a residue pusher with and without a coulter, and no row cleaner (control), was used to determine the effects of rolling direction and row cleaners on cotton population, emergence rate, and yield. The rye cover crop was terminated with a roller/crimper and glyphosate. Among growing seasons, significant differences existed in rye production, cotton population, emergence rate index (ERI), seed cotton yield, amount of residue accumulated on the planter, and the time required to remove residue from the planter. For the rolling direction treatments, higher cotton population was found for 0° and non-rolled rye, and the lowest population was found with 195°. The ERI was higher for 0° and non-rolled rye, and the lowest ERI was observed for 195°. For the row cleaner treatments, the cotton population and ERI were both higher for Dawn with coulter and pusher with coulter. Across three growing seasons, cotton yield was not affected by rolling direction but was affected by row cleaner. Significantly higher cotton yield was associated with Dawn with coulter and pusher with or without coulter, compared to lower yield for no row cleaner. The important findings were that residue accumulation was not problematic when the cover crop was rolled. When the cover crop was not rolled, the pusher accumulated more residue than Dawn with coulter; however, the time required to remove the residue was more than 3 times higher for Dawn with coulter as compared to the pusher. The data indicated that, across all growing seasons and locations, rolling direction and row cleaner affected the cotton population, ERI, residue accumulation on the planter, and the time required to remove residue. In contrast, rolling direction did not affect seed cotton yield, but row cleaner had an effect on seed cotton yield. Based on the results, the best combination of rolling direction and row cleaner was 15° offset to the cotton planting direction and Dawn with coulter, which resulted in higher cotton population, ERI, and seed cotton yield without residue accumulation on the row cleaner. However, the 0° and 180° Dawn with coulter and 15° pusher with coulter combinations were also effective in producing relatively higher cotton population, ERI, and seed cotton yield. Keywords: Conservation system, Cotton yield, Emergence, Plant population, Residue pusher, Roller/crimper, Rolling direction, Row cleaner, Rye cover crop.

2017 ◽  
Vol 32 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractWith the recent confirmation of protoporphyrinogen oxidase (PPO)-resistant Palmer amaranth in the US South, concern is increasing about the sustainability of weed management in cotton production systems. Cover crops can help to alleviate this problem, as they can suppress weed emergence via allelochemicals and/or a physical residue barrier. Field experiments were conducted in 2014 and 2015 at the Arkansas Agricultural Research and Extension Center to evaluate various cover crops for suppressing weed emergence and protecting cotton yield. In both years, cereal rye and wheat had the highest biomass production, whereas the amount of biomass present in spring did not differ among the remaining cover crops. All cover crops initially diminished Palmer amaranth emergence. However, cereal rye provided the greatest suppression, with 83% less emergence than in no cover crop plots. Physical suppression of Palmer amaranth and other weeds with cereal residues is probably the greatest contributor to reducing weed emergence. Seed cotton yield in the legume and rapeseed cover crop plots were similar when compared with the no cover crop treatment. The seed cotton yield collected from cereal cover crop plots was lower than from other treatments due to decreased cotton stand.


2017 ◽  
Vol 60 (6) ◽  
pp. 2083-2096 ◽  
Author(s):  
Pradip Adhikari ◽  
Nina Omani ◽  
Srinivasulu Ale ◽  
Paul B. DeLaune ◽  
Kelly R. Thorp ◽  
...  

Abstract. Interest in cover crops has been increasing in the Texas Rolling Plains (TRP) region, mainly to improve soil health. However, there are concerns that cover crops could potentially reduce soil water and thereby affect the yield of subsequent cash crops. Previous field studies from this region have demonstrated mixed results, with some showing a reduction in cash crop yield due to cover crops and others indicating no significant impact of cover crops on subsequent cotton fiber yield. The objectives of this study were to (1) evaluate the CROPGRO-Cotton and CERES-Wheat modules within the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for the TRP region, and (2) use the evaluated model to assess the long-term effects of growing winter wheat as a cover crop on water balances and seed cotton yield under irrigated and dryland conditions. The two DSSAT crop modules were calibrated using measured data on soil water and crop yield from four treatments: (1) irrigated cotton without a cover crop (CwoC-I), (2) irrigated cotton with winter wheat as a cover crop (CwC-I), (3) dryland cotton without a cover crop (CwoC-D), and (4) dryland cotton with a winter wheat cover crop (CwC-D) at the Texas A&M AgriLife Research Station at Chillicothe from 2011 to 2015. The average percent error (PE) between the CSM-CROPGRO-Cotton simulated and measured seed cotton yield was -10.1% and -1.0% during the calibration and evaluation periods, respectively, and the percent root mean square error (%RMSE) was 11.9% during calibration and 27.6% during evaluation. For simulation of aboveground biomass by the CSM-CERES-Wheat model, the PE and %RMSE were 8.9% and 9.1%, respectively, during calibration and -0.9% and 21.8%, respectively, during evaluation. Results from the long-term (2001-2015) simulations indicated that there was no substantial reduction in average seed cotton yield and soil water due to growing winter wheat as a cover crop. Keywords: CERES-Wheat, Cover crop, Crop simulation model, CROPGRO-Cotton, DSSAT, Seed cotton yield, Soil water.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Ted S. Kornecki ◽  
Corey M. Kichler

In a no-till system, there are many different methods available for terminating cover crops. Mechanical termination, utilizing rolling and crimping technology, is one method that injures the plant without cutting the stems. Another popular and commercially available method is mowing, but this can cause problems with cover crop re-growth and loose residue interfering with the planter during cash crop planting. A field experiment was conducted over three growing seasons in northern Alabama to determine the effects of different cover crops and termination methods on cantaloupe yield in a no-till system. Crimson clover, cereal rye, and hairy vetch cover crops were terminated using two different roller-crimpers, including a two-stage roller-crimper for four-wheel tractors and a powered roller-crimper for a two-wheel walk-behind tractor. Cover crop termination rates were evaluated one, two, and three weeks after termination. Three weeks after rolling, a higher termination rate was found for flail mowing (92%) compared to lower termination rates for a two-stage roller (86%) and powered roller-crimper (85%), while the control termination rate was only 49%. There were no significant differences in cantaloupe yield among the rolling treatments, which averaged 38,666 kg ha−1. However, yields were higher for cereal rye and hairy vetch cover crops (41,785 kg ha−1 and 42,000 kg ha−1) compared to crimson clover (32,213 kg ha−1).


2017 ◽  
Vol 34 (5) ◽  
pp. 406-414 ◽  
Author(s):  
Leah M. Duzy ◽  
Ted S. Kornecki

AbstractIn conservation agriculture, cover crops are utilized to improve soil properties and to enhance cash crop growth. One important part of cover crop management is termination. With smaller profit margins and constraints on time and labor, producers are searching for ways to reduce time and labor required to terminate cover crops while maintaining or increasing profitability. This study examined the effect of 11 different combinations of terminating cereal rye (Secale cerealeL.) and planting cotton (Gossypium hirsutumL.) on population, seed cotton yield, total costs and net returns; and how combined operations affect labor, fuel consumption and carbon (CO2) emissions in a conservation system. Cereal rye followed by cotton was planted in central Alabama during the 2009–2011 crop years. Treatments included cotton planted directly into standing cereal rye, cover crops terminated at early milk growth stage using mechanical (roller or roller/crimper) with or without chemical termination (spraying) followed by cotton planting, and cover crop termination combined with cotton planting using spraying with or without rolling termination. While the 2011 crop year had the lowest plant populations, there was no year effect on seed cotton yields, total costs or net returns. Rolling with or without spraying yielded higher plant populations (26%), seed cotton yields (18.3%) and net returns (17.2%) than cotton planted into standing rye; however, rolling with or without spraying also had 23.8% higher costs due to increased fuel usage, machinery and labor hours, and yield varying costs. While rolling with spraying had slightly higher total costs compared with rolling alone (6.5%), plant populations, seed cotton yields and net returns were 11.42%, 6.4% and 6.5% higher, respectively. Converting from three separate operations for cover crop termination and cotton planting to rolling and spraying combined with planting, producers could potentially reduce CO2emissions from fuel use and labor hours associated with cover crop termination and cotton planting by up to 51%.


2020 ◽  
Vol 2 (4) ◽  
pp. 631-648
Author(s):  
Ted S. Kornecki

Rollers/crimpers have been used to terminate cover crops typically with supplemental herbicide application to speed-up termination. Due to environmental concerns, there is a need to reduce herbicide use. In the Southern USA, the cash crop is typically planted three weeks after a rolled cover crop reaches more than 90% kill rate which eliminates competition with the cash crop for water and nutrients. A three-year replicated field experiment was initiated in the fall of 2014 to determine the effects of recurring rolling by experimental rollers/crimpers in terminating a cereal rye cover crop in central Alabama and how multiple rolling affected soil strength. Experimental 2-stage (one smooth drum and one crimping drum), 4-stage (one smooth drum and three crimping drums), spiral, and smooth rollers were tested to roll rye 1, 2, and 3 times (conducted at the same day). A smooth roller with mounted spray boom applying glyphosate rolling once was also evaluated, and untreated rye was the control. Rye was terminated at the milk growth stage and was evaluated one, two and three weeks after rolling. At one week after rolling, the highest rye kill rate was obtained with rolling three times by the 4-stage (96%), 2-stage (92%), spiral roller (81%); rolling once by the smooth roller with glyphosate (94%) compared to the untreated rye at 37%. At two weeks after rolling no differences among rollers were found (91% to 98%); the untreated rye was 54%. Similarly, at three weeks after rolling no differences were detected among rollers (99% to 100%); the untreated rye was 86%. Rolling 2 or 3 times compared with rolling one time did not cause soil compaction. However, at the 15 cm depth cone index (CI) did exceed 2 MPa (a critical value of root penetration restriction); although this CI increase was solely related to decrease in gravimetric soil moisture content (GMC). In addition, over three growing seasons, the seed cotton yield was not affected by rolling treatments with the average yield of 3601 kg ha−1 (1512 kg ha−1 of cotton lint).


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Zaheer Ahmed Deho ◽  
Saifullah Abro ◽  
Shafiq Ahmed Abro ◽  
Muhammad Rizwan ◽  
Fakhruddin Kharo

2007 ◽  
Vol 64 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Kipling Shane Balkcom ◽  
Charles Wesley Wood ◽  
James Fredrick Adams ◽  
Bernard Meso

Leguminous winter cover crops have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops, but the potential of summer legumes to reduce N requirements of a winter annual grass, used as a cover crop, has not been extensively examined. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent rye (Secale cereale L.) cover crop grown in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL USA during the 2003-2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67 and 101 kg ha-1) applied in the fall. Peanut residue had minimal to no effect on rye biomass yields, N content, carbon (C) /N ratio, or N, P, K, Ca and Zn uptake. Additional N increased rye biomass yield, and N, P, K, Ca, and Zn uptakes. Peanut residue does not contribute significant amounts of N to a rye cover crop grown as part of a conservation system, but retaining peanut residue on the soil surface could protect the soil from erosion early in the fall and winter before a rye cover crop grows sufficiently to protect the typically degraded southeastern USA soils.


2021 ◽  
Vol 9 (3) ◽  
pp. 105-109
Author(s):  
V. J. Zapadiya ◽  

A field experiment was conducted to evaluate the 45 F1 hybrids derived from 10×10 half diallel fashion along with ten parents and one standard check GN.Cot.Hy-14 were sown in randomized block design with three replications during kharif -2017 at Cotton Research Station, Junagadh Agricultural University, Junagadh. The genetic components of variation were determined for 12 characters viz., days to 50% flowering, days to 50% boll opening, plant height (cm), number of monopodia per plant, number of sympodia per plant, number of bolls per plant, boll weight (g), seed cotton yield per plant (g), ginning percentage (%), seed index (g), lint index (g) and oil percentage (%).The estimate of the components of variation revealed significant results for both additive (D) as well as dominance effects (H1 and H2) for all the characters except plant height non-significant H2 component, but in majority of traits (except plant height, lint index) H1 was higher than D indicating dominance components were important in the inheritance of seed cotton yield and its components. The average degree of dominance (H1/D)1/2 was found to be more than unity for all the traits (except plant height, number of monopodia per plant and lint index indicating partial dominance) indicating over dominance. Asymmetrical distribution of positive and negative genes in the parents was observed for all the traits. High estimates of heritability in narrow sense was observed for days to 50% flowering, days to 50 % boll bursting, number of monopodia per plant, ginning percentage (%), lint index (g) and oil content (%) suggesting that selection based on these attribute would lead to rapid improvement. Due to preponderance of non-additive gene effects of seed cotton yield per plant and most of its component traits, heterosis breeding would also be practically feasible in cotton.


Author(s):  
Bilal Nawaz ◽  
Saira Sattar ◽  
Bilal Bashir ◽  
Muhammad Jamshaid ◽  
Khadim Hussain ◽  
...  

Background: Cotton (Gossypium hirsutum L.) is grown in more than sixty countries worldwide. It is an important fiber crop in the world. It plays a vital role in our national economy being the source of earning of foreign exchange, therefore, it is considered to be the backbone of the economy of Pakistan. In Pakistan, millions of families are associated with cotton and textile industry for their livelihood.  Results: In this experiment F2 population of the cross L. A. Frego Bract x CIM-600 and their parents was sown in randomized complete block design with three replications during normal growing season of the year 2014 to sort out best performing genotypes for yield related traits. Analysis of variance (ANOVA) revealed that parental and their F2 population showed significant differences for all the observed agronomic traits (plant height, number of monopodia branches, number of sympodial branches, number of bolls per plant, boll weight, ginning out turn, bract type, boll shape, beak size, seed cotton yield, staple length, fiber strength and fiber fineness). Estimation of correlation revealed that seed cotton yield was found positively correlated sympodial branches, fiber fineness and boll weight while ginning out turn, bract type, beak size, staple length and fiber strength were negatively associated with seed cotton yield. Epistasis was not found to be involved in any of the traits. Conclusion:  The correlation and genetics study of various yield related traits provides us useful information for effective selection and sustainable breeding programs. Estimation of broad sense heritability ( ) in F2 populations for different traits vary as following order; ginning out turn>plant height>seed cotton yield>sympodia branches>fiber length>fiber strength>bolls per plant>monopodia branches>boll weight>fiber fineness with heritability 0.90, 0.79, 0.78, 0.75, 0.73, 0.71 0.67, 0.64, 0.63 and 0.50 respectively. Results suggested form heritability and correlation that these traits can be improved either through appropriate selection method or hybrid breeding programme.


Sign in / Sign up

Export Citation Format

Share Document