Detection of Flooding Attack on OBS Network Using ant Colony Optimization and Machine Learning

2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Mohamed Takieddine Seddik ◽  
Ouahab Kadri ◽  
Chakir Bouarouguene ◽  
Houssem Brahimi
Author(s):  
Dr. Joy Iong Zong Chen ◽  
Kong-Long Lai

The Internet of Things networks comprising wireless sensors and controllers or IoT gateways offers extremely high functionalities. However, not much attention is paid towards energy optimization of these nodes and enabling lossless networks. The wireless sensor networks and its applications has industrialized and scaled up gradually with the development of artificial intelligence and popularization of machine learning. The uneven network node energy consumption and local optimum is reached by the algorithm protocol due to the high energy consumption issues relating to the routing strategy. The smart ant colony optimization algorithm is used for obtaining an energy balanced routing at required regions. A neighbor selection strategy is proposed by combining the wireless sensor network nodes and the energy factors based on the smart ant colony optimization algorithm. The termination conditions for the algorithm as well as adaptive perturbation strategy are established for improving the convergence speed as well as ant searchability. This enables obtaining the find the global optimal solution. The performance, network life cycle, energy distribution, node equilibrium, network delay and network energy consumption are improved using the proposed routing planning methodology. There has been around 10% energy saving compared to the existing state-of-the-art algorithms.


Author(s):  
Prince Nathan S

Abstract: Travelling Salesmen problem is a very popular problem in the world of computer programming. It deals with the optimization of algorithms and an ever changing scenario as it gets more and more complex as the number of variables goes on increasing. The solutions which exist for this problem are optimal for a small and definite number of cases. One cannot take into consideration of the various factors which are included when this specific problem is tried to be solved for the real world where things change continuously. There is a need to adapt to these changes and find optimized solutions as the application goes on. The ability to adapt to any kind of data, whether static or ever-changing, understand and solve it is a quality that is shown by Machine Learning algorithms. As advances in Machine Learning take place, there has been quite a good amount of research for how to solve NP-hard problems using Machine Learning. This reportis a survey to understand what types of machine algorithms can be used to solve with TSP. Different types of approaches like Ant Colony Optimization and Q-learning are explored and compared. Ant Colony Optimization uses the concept of ants following pheromone levels which lets them know where the most amount of food is. This is widely used for TSP problems where the path is with the most pheromone is chosen. Q-Learning is supposed to use the concept of awarding an agent when taking the right action for a state it is in and compounding those specific rewards. This is very much based on the exploiting concept where the agent keeps on learning onits own to maximize its own reward. This can be used for TSP where an agentwill be rewarded for having a short path and will be rewarded more if the path chosen is the shortest. Keywords: LINEAR REGRESSION, LASSO REGRESSION, RIDGE REGRESSION, DECISION TREE REGRESSOR, MACHINE LEARNING, HYPERPARAMETER TUNING, DATA ANALYSIS


Author(s):  
Aditya, Lalit and Mantosh Kumar

The prediction of heart disease is one of the areas where machine learning can be implemented. Optimization algorithms have the advantage of dealing with complex non-linear problems with a good flexibility and adaptability. In this paper, we exploited the Fast Correlation-Based Feature Selection (FCBF) method to filter redundant features in order to improve the quality of heart disease classification. Then, we perform a classification based on different classification algorithms such as K-Nearest Neighbour, Support Vector Machine, Naïve Bayes, Random Forest and a Multilayer Perception | Artificial Neural Network optimized by Particle Swarm Optimization (PSO) combined with Ant Colony Optimization (ACO) approaches. The proposed mixed approach is applied to heart disease dataset; the results demonstrate the efficacy and robustness of the proposed hybrid method in processing various types of data for heart disease classification. Therefore, this study examines the different machine learning algorithms and compares the results using different performance measures, i.e. accuracy, precision, recall, f1-score, etc. A maximum classification accuracy of 99.65% using the optimized model proposed by FCBF, PSO and ACO. The results show that the performance of the proposed system is superior to that of the classification technique presented above.


2012 ◽  
Author(s):  
Earth B. Ugat ◽  
Jennifer Joyce M. Montemayor ◽  
Mark Anthony N. Manlimos ◽  
Dante D. Dinawanao

2012 ◽  
Vol 3 (3) ◽  
pp. 122-125
Author(s):  
THAHASSIN C THAHASSIN C ◽  
◽  
A. GEETHA A. GEETHA ◽  
RASEEK C RASEEK C

Author(s):  
Achmad Fanany Onnilita Gaffar ◽  
Agusma Wajiansyah ◽  
Supriadi Supriadi

The shortest path problem is one of the optimization problems where the optimization value is a distance. In general, solving the problem of the shortest route search can be done using two methods, namely conventional methods and heuristic methods. The Ant Colony Optimization (ACO) is the one of the optimization algorithm based on heuristic method. ACO is adopted from the behavior of ant colonies which naturally able to find the shortest route on the way from the nest to the food sources. In this study, ACO is used to determine the shortest route from Bumi Senyiur Hotel (origin point) to East Kalimantan Governor's Office (destination point). The selection of the origin and destination points is based on a large number of possible major roads connecting the two points. The data source used is the base map of Samarinda City which is cropped on certain coordinates by using Google Earth app which covers the origin and destination points selected. The data pre-processing is performed on the base map image of the acquisition results to obtain its numerical data. ACO is implemented on the data to obtain the shortest path from the origin and destination point that has been determined. From the study results obtained that the number of ants that have been used has an effect on the increase of possible solutions to optimal. The number of tours effect on the number of pheromones that are left on each edge passed ant. With the global pheromone update on each tour then there is a possibility that the path that has passed the ant will run out of pheromone at the end of the tour. This causes the possibility of inconsistent results when using the number of ants smaller than the number of tours.


Sign in / Sign up

Export Citation Format

Share Document