scholarly journals A salt tolerant Sphingosinicella microcystinivorans A3 isolated from soil contaminated with mercury in traditional gold mining of Jendi Village, Wonogiri District, Indonesia

2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Sutami SUTAMI ◽  
Purwanto PURWANTO ◽  
Retno Rosariastuti

Abstract. Sutami, Purwanto, Rosariastuti R. 2021. A salt tolerant Sphingosinicella microcystinivorans A3 isolated from soil contaminated with mercury in traditional gold mining of Jendi Village, Wonogiri District, Indonesia. Biodiversitas 22: 3785-3791. Isolation and characterization of indigenous bacteria from the soil of traditional gold mining contaminated with mercury is the first step in a series of research to explore and utilize indigenous bacteria in Jendi's area. This study was aimed to determine the characteristics and identity of bacterial isolates from soil of traditional gold mining in Jendi Village, Wonogiri contaminated by mercury. The methods used in this study included bacterial isolation, media preparation, phenotypic identification including; morphological and physiological tests and genotyping tests. The results showed that the bacterial isolate A3 grew optimally in media with the addition of 10% NaCl, at a temperature of 27°C, and pH 9. There were negative reactions to the observations of gram staining, acid production from glucose, indole production, catalase and urease, and positive reactions to oxidation. A neighbor-joining phylogenetic tree based on the 16S rRNA gene sequence showed that the A3 strain was closely related to Sphingosinicella microcystinivorans strain Y2T (JCM 13185T) with 100% Query coverage and a maximum identity of 99.56%.

2021 ◽  
Vol 38 (4) ◽  
pp. 527-531
Author(s):  
Pınar Çağlayan

In the present study, strain MHDS3 was isolated from a water sample of Çamaltı Saltern and identified using conventional and molecular methods. 16S rRNA gene sequence analyses showed that the strain MHDS3 belonged to Planococcus dechangensis species. It gave a positive result in the Gram staining test. The cells were coccus, non-motile, aerobic, catalase positive, oxidase negative and the colony pigmentation was yellow-orange. It showed negative results for citrate utilization, indole production from tryptophane, Voges-Proskauer and methyl red. This isolate was able to grow at 10-45°C (optimally 35°C), pH 6-8 (optimally pH 7) and 3-20% NaCl (optimally 10% NaCl). It was not able to grow at 4°C, 10°C, 50°C, salt-free, 0.5%, 25%, %30 total salt, pH 4-5, and pH 9-12. Glucose, ribose, fructose, sucrose, maltose were used by the test isolate as carbon sources. Different amino acids found in the structure of animal hide such as L-lysine, L-arginine, L-cysteine, L-alanine, L-tyrosine, L-histidine were also utilized by the bacterium. During the salt production process, this bacterium may contaminate the salt which is used in the food and leather industries. The activities of harmful moderately halophilic bacteria should be prevented by effective antimicrobial applications.


2015 ◽  
Vol 2 (2) ◽  
pp. 229-237
Author(s):  
Istiaq Ahmed ◽  
Md Tofazzal Islam ◽  
Md Akhter Hossain Chowdhury ◽  
Md Kamruzzaman

This study was carried out to isolate, screen and characterize arsenic (As) resistant bacteria from As contaminated soils of Dumrakandi and Matlab under Faridpur and Chandpur districts and to evaluate their efficiency in reducing As toxicity against rice seedlings during germination. Thirteen strains were isolated from the soils which showed resistance to different levels of sodium arsenite (viz. 5, 10, 20 and 40 mM) in both agar plate and broth assay using BSMY I media. Among the isolates, BTL0011, BTL0012, BTL0015 and BTL0022 showed highest resistance to 40 mM sodium arsenite. Gram staining and KOH solubility test revealed that five strains were gram positive and rest eight was gram negative. They grew well in the liquid media at pH 5.5 to 8.5. In-vitro rice seedling bioassay with two superior isolates (BTL0011 and BTL0022) revealed that As resistant strains significantly enhanced seed germination of BRRI dhan29 and BRRI dhan47 at 60 ppm As. This study was laid out in CRD with three replications. The performance of BTL 0022 was superior to BTL0011. The overall results suggest that BTL0011 and BTL0022 can be used for bioremediation of As contaminated soils and to increase the germination and seedling growth of rice in As contaminated soils.Res. Agric., Livest. Fish.2(2): 229-237, August 2015


2002 ◽  
Vol 45 (12) ◽  
pp. 175-179 ◽  
Author(s):  
J.H. Shi ◽  
Y. Suzuki ◽  
B.-D. Lee ◽  
S. Nakai ◽  
M. Hosomi

We cultivated hundreds of sediment, soil, and manure samples taken from rivers and farms in a medium containing ethynylestradiol (EE2) as the sole source of carbon, so that microorganisms in the samples would acclimatize to the presence of EE2. Finally, we isolated an EE2-degrading microorganism, designated as strain HNS-1, from a cowshed sample. Based on its partial nucleotide sequence (563 bp) of the 28S rRNA gene, strain HNS-1 was identified as Fusarium proliferatum. Over 15 days, F. proliferatum strain HNS-1 removed 97% of EE2 at an initial concentration of 25 mg.L−1, with a first-order rate constant of 0.6 d−1. Unknown products of EE2 degradation, which may be more polar compounds that have a phenolic group, remained in the culture medium.


Author(s):  
Ajay S. Arya ◽  
Minh T. H. Hang ◽  
Mark A. Eiteman

Bacteria were isolated from wastewater and soil containing charred wood remnants based on their ability to use levoglucosan as a sole carbon source and on their levoglucosan dehydrogenase (LGDH) activity. On the basis of their 16S rRNA gene sequences, these bacteria represented diverse genera of Microbacterium, Paenibacillus , Shinella , and Klebsiella . Genomic sequencing of the isolates verified that two isolates represented novel species, Paenibacillus athensensis MEC069 T and Shinella sumterensis MEC087 T , while the remaining isolates were closely related to either Microbacterium lacusdiani or Klebsiella pneumoniae . The genetic sequence of LGDH, lgdA , was found in the genomes of these four isolates as well as Pseudarthrobacter phenanthrenivorans Sphe3. The identity of the P. phenanthrenivorans LGDH was experimentally verified following recombinant expression in E. coli . Comparison of the putative genes surrounding lgdA in the isolate genomes indicated that several other gene products facilitate the bacterial catabolism of levoglucosan, including a putative sugar isomerase and several transport proteins. Importance Levoglucosan is the most prevalent soluble carbohydrate remaining after high temperature pyrolysis of lignocellulosic biomass, but it is not fermented by typical production microbes such as Escherichia coli and Saccharomyces cerevisiae . A few fungi metabolize levoglucosan via the enzyme levoglucosan kinase, while several bacteria metabolize levoglucosan via levoglucosan dehydrogenase. This study describes the isolation and characterization of four bacterial species which degrade levoglucosan. Each isolate is shown to contain several genes within an operon involved in levoglucosan degradation, furthering our understanding of bacteria which metabolize levoglucosan.


1989 ◽  
Vol 171 (6) ◽  
pp. 3479-3485 ◽  
Author(s):  
M Mevarech ◽  
S Hirsch-Twizer ◽  
S Goldman ◽  
E Yakobson ◽  
H Eisenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document