Development of the Lower Cambrian–Middle Ordovician Carbonate PlatformNorth Atlantic Region

Author(s):  
Svend Stouge ◽  
David A. T. Harper ◽  
William D. Boyce ◽  
Ian Knight ◽  
Jørgen L. Christiansen
1998 ◽  
Vol 1 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Tom Amorosi ◽  
Paul C. Buckland ◽  
Kevin J. Edwards ◽  
Ingrid Mainland ◽  
Tom H. McGovern ◽  
...  

1989 ◽  
Vol 145 ◽  
pp. 103-108
Author(s):  
M.J Hambrey ◽  
J.S Peel ◽  
M.P Smith

The Caledonides of East Greenland contain the best exposures of Upper Riphean to Ordovician sediments in the Arctic - North Atlantic region. At its thickest the sequence contains 13 km of Eleonore Bay Group clastic sediments and carbonates, the 0.8 km thick Tillite Group and 3 km of Cambro-Ordovician strata (Henriksen & Higgins, 1976; Henriksen, 1985). These sediments crop out in a belt stretching for nearly 300 km through the fjord region, between 71° 38' and 74° 25'N. Those in the northern part of the region, between Brogetdal in Strindberg Land and southern Payer Land, and especiaIly Albert Heim Bjerge and C. H. Ostenfeld Nunatak, were the subject of investigation during 1988 (figs 1, 2).


2021 ◽  
Author(s):  
Helen Mackay ◽  
Gill Plunkett ◽  
Britta Jensen ◽  
Thomas Aubry ◽  
Christophe Corona ◽  
...  

Abstract. The 852/3 CE eruption of Mount Churchill, Alaska, was one of the largest first millennium volcanic events, with a magnitude of 6.7 (VEI 6) and a tephra volume of 39.4–61.9 km3 (95 % confidence). The spatial extent of the ash fallout from this event is considerable and the cryptotephra (White River Ash east; WRAe) extends as far as Finland and Poland. Proximal ecosystem and societal disturbances have been linked with this eruption; however, wider eruption impacts on climate and society are unknown. Greenland ice-core records show that the eruption occurred in winter 852/3 ± 1 CE and that the eruption is associated with a relatively moderate sulfate aerosol loading, but large abundances of volcanic ash and chlorine. Here we assess the potential broader impact of this eruption using palaeoenvironmental reconstructions, historical records and climate model simulations. We also use the fortuitous timing of the 852/3 CE Churchill eruption and its extensively widespread tephra deposition of the White River Ash (east) (WRAe) to examine the climatic expression of the warm Medieval Climate Anomaly period (MCA; ca. 950–1250 CE) from precisely linked peatlands in the North Atlantic region. The reconstructed climate forcing potential of 852/3 CE Churchill eruption is moderate compared with the eruption magnitude, but tree-ring-inferred temperatures report a significant atmospheric cooling of 0.8 °C in summer 853 CE. Modelled climate scenarios also show a cooling in 853 CE, although the average magnitude of cooling is smaller (0.3 °C). The simulated spatial patterns of cooling are generally similar to those generated using the tree-ring-inferred temperature reconstructions. Tree-ring inferred cooling begins prior to the date of the eruption suggesting that natural internal climate variability may have increased the climate system’s susceptibility to further cooling. The magnitude of the reconstructed cooling could also suggest that the climate forcing potential of this eruption may be underestimated, thereby highlighting the need for greater insight into, and consideration of, the role of halogens and volcanic ash when estimating eruption climate forcing potential. Precise comparisons of palaeoenvironmental records from peatlands across North America and Europe, facilitated by the presence of the WRAe isochron, reveal no consistent MCA signal. These findings contribute to the growing body of evidence that characterizes the MCA hydroclimate as time-transgressive and heterogeneous, rather than a well-defined climatic period. The presence of the WRAe isochron also demonstrates that no long-term (multidecadal) climatic or societal impacts from the 852/3 CE Churchill eruption were identified beyond areas proximal to the eruption. Historical evidence in Europe for subsistence crises demonstrate a degree of temporal correspondence on interannual timescales, but similar events were reported outside of the eruption period and were common in the 9th century. The 852/3 CE Churchill eruption exemplifies the difficulties of identifying and confirming volcanic impacts for a single eruption, even when it is precisely dated.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
John Crossley ◽  
Christopher A. Skilbeck

This article describes a study of Tripleurospermum maritimum (L.) W.D.J. Koch and T. inodorum (L.) Sch. Bip. (Asteraceae) in the Orkney Islands (v.c.111), the results of which suggest that intermediates between these taxa may be rather common, and that T. maritimum subsp. nigriceps and subsp. maritimum are both involved, the former more frequently. Obviously this results in a complex taxonomic situation, evidently not confined to Orkney in the far north. Key identifying characters of the taxa are systematically examined and guidance offered on determining hybrids using a population level approach. The taxonomic complexities of these northern populations are discussed, with regard in particular to the identity of T. inodorum occurring there and the place of T. maritimum subsp. nigrescens in the forms and subspecies of T. maritimum found in the north Atlantic region.


Sign in / Sign up

Export Citation Format

Share Document