Formation and Dynamics of Overpressured Basin Compartments through Coupling of Diagenetic Reaction-Transport-Mechanical Processes

AAPG Bulletin ◽  
1992 ◽  
Vol 76 ◽  
Author(s):  
SONNENTHAL, ERIC L., J. M. MAXWELL,

As emphasized by Dr Seilacher in his introduction to this symposium, and illustrated in the contribution by Mr Martill, some of the most important examples of fossil Lagersätten occur in marine shales of Mesozoic age. Many of the factors that control the types and preservation of fossils are the same as those that affect the authigenic mineralogy and geochemistry of the shales, notably the degree of aeration or stagnation of the water column and the quantity and quality of the organic matter supplied to the sediment. Perhaps the most important diagenetic reaction in marine shales is sulphate reduction by bacteria that are obligate anaerobes. They can operate in anoxic waters or in ‘reducing microenvironments’ (such as concentrations of organic matter, or enclosed voids within shells) in sediments whose pore waters are kept generally oxic by the effects of burrowing organisms. Sulphate is reduced to sulphide and in the presence of reduced iron this can be precipitated as iron sulphides, normally found in ancient sediments in the form of pyrite. Pyrite is thus a key mineral in studying shale diagenesis, for its geochemistry as well as for its direct importance in preserving fossils by replacement of soft-parts (see, for example, Stürmer 1984), of aragonitic shells (see, for example, Fisher 1985) and by forming internal moulds of chambered shells (see, for example, Hudson & Palframan 1969; Hudson 1982).


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Beth N. Orcutt ◽  
C. Geoffrey Wheat ◽  
Olivier Rouxel ◽  
Samuel Hulme ◽  
Katrina J. Edwards ◽  
...  

Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 53 ◽  
Author(s):  
Joshua Padilla ◽  
H. Selim

Glyphosate (N-(phosphonomethyl) glycine) (GPS) is currently the most commonly used herbicide worldwide, and is generally considered as immobile in soils. However, numerous reports of the environmental occurrence of the herbicide coupled with recent evidence of human toxicity necessitate further investigation as to the behavior of GPS in the soil environment. Batch sorption studies along with miscible displacement experiments were carried out in order to assess the mobility of GPS in two Louisiana agricultural soils; Commerce silt loam and Sharkey clay. Batch results indicated a high affinity of both soils for solvated GPS, with greater affinity observed by the Sharkey soil. GPS sorption in the Commerce soil was most likely facilitated by the presence of amorphous Fe and Al oxides, whereas the high cation exchange capacity of the Sharkey soil likely allows for GPS complexation with surface exchangeable poly-valent cations. Miscible displacement studies indicate that GPS mobility is highly limited in both soils, with 3% and 2% of the applied herbicide mass recovered in the effluent solution from the Commerce and Sharkey soils, respectively. A two-site multi-reaction transport model (MRTM) adequately described GPS breakthrough from both soils and outperformed linear modeling efforts using CXTFIT. Analysis of extracted herbicide residues suggests that the primary metabolite of GPS, aminomethylphosphonic acid (AMPA), is more mobile in both soils, although both compounds are strongly retained.


2011 ◽  
Vol 8 (10) ◽  
pp. 2977-2991 ◽  
Author(s):  
C. Jones ◽  
S. A. Crowe ◽  
A. Sturm ◽  
K. L. Leslie ◽  
L. C. W. MacLean ◽  
...  

Abstract. This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125 m depth in the water column, and Mn reduction could be a significant contributor to CH4 oxidation. By combining results from synchrotron-based X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.


2013 ◽  
Author(s):  
Paola Ronchi ◽  
Alberto Consonni ◽  
Ornella Borromeo ◽  
Alfredo Battistelli ◽  
Claudio Geloni

2007 ◽  
Vol 17 (02) ◽  
pp. 305-326 ◽  
Author(s):  
GUILLERMO HAUKE ◽  
GIANCARLO SANGALLI ◽  
MOHAMED H. DOWEIDAR

Computational methods for the advection-diffusion-reaction transport equation are still a challenge. Although there exist globally stable methods, oscillations around sharp layers such as boundary, inner and outflow layers, are typical in multi-dimensional flows. In this paper a variational formulation that combines two types of stabilization integrals is proposed, namely an adjoint stabilization and a gradient adjoint stabilization. Two free parameters are chosen by imposing one-dimensional superconvergence. Then, when applied to multi-dimensional flows, the method presents better local stability than the present stabilized methods. Furthermore, in the advective-diffusive limit and for piecewise linear functional spaces, the method recovers the classical SUPG method.


Sign in / Sign up

Export Citation Format

Share Document