scholarly journals Spatial distribution of soil chemical properties in the cerrado of Tocantins

2021 ◽  
Vol 29 ◽  
pp. 335-346
Author(s):  
Osvaldo José Ferreira Júnior ◽  
Antônio Clementino dos Santos ◽  
Carlos Henrique Naves Júnior ◽  
Flávio Coelho Mendes ◽  
Thales Aquino de Queiroz Ramalho ◽  
...  

Information on spatial variability of soil chemical properties is allowing an increasingly efficient management of soil fertility. This study was conducted in the municipality of Santa Rosa do Tocantins, TO, in the 2018/2019 crop year. The objectives of the study were to characterize the spatial variability of chemical properties of a dystrophic Red Latosol in the Cerrado of Tocantins using geostatistics and optimize the management of soil fertility by means of precision agronomy techniques, for more efficient input use in agricultural production areas. For the experiment, 49 soil samples were collected at 0.2 m depth, from equidistant points in a regular grid 100 m apart, over an area of ??150 ha. Each sample was composed of 5 subsamples. The soil properties evaluated included pH, bases sum, potential acidity, organic matter, total cation exchange capacity, base saturation, phosphorus, sulfur, potassium, calcium, magnesium, boron, copper, iron, manganese, and zinc. A descriptive analysis was carried out, highlighting the mean, median, minimum, and maximum values for each soil variable. In addition, the coefficients of variation, asymmetry, kurtosis, and the normality test of Kolmogorov-Smirnov were performed. The area presented significant variations in chemical and macronutrient attributes and little variation in micronutrients, except for zinc. The study reveals variations in different soil attributes and the need for correction depending on the requirements of the crop.

Author(s):  
E. O. Azu Donatus ◽  
B. A. Essien ◽  
O. U. Nwanja ◽  
P. E. Nweke

The present study investigated the combined effect of rice husk dust (RHD) (0.1.2.3.4 and 5 ton ha-1) and NPK 10:10:10 fertilizer (0, 1, 2, 3, 4 and 5 ton ha-1) arranged factorially in Randomized Complete Block Design(RCBD)on selected soil fertility indices (pH, organic carbon, organic matter, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity and effective cation exchange capacity) and growth parameters of Jatropha (number of leaves, plant height, number of branches and stem girth) in an ultisol of southeastern Nigeria. Results showed significant (P<0.05) improvement in all soil chemical properties and growth parameters of plant compared to control which had no treatment. However, the effects varied with treatment levels and interactions. While the effects increased with rate of application, interactions consistently showed superior effect on all parameters studied. Thus, combining rice husk dust (RHD) and NPK may increase the soil fertility and growth of Jatropha. Treatments combination of5tonha-1 RHD and 3tonha-1 NPK and 5tonha-1 RHD and 5tonha-1 NPK relatively gave the most appreciable result in soil chemical properties and growth of Jatropha respectively, thus are recommended.


Author(s):  
Jorge Dafonte Dafonte ◽  
Montserrat Valcárcel Armesto ◽  
Rosane Da Silva Dias ◽  
Eva Vidal Vázquez ◽  
Antonio Paz González

The spatial variability of soil properties can be assessed through concepts of scale invariance, fractals and multifractals. The aim of this study was to characterize the scaling patterns and structural heterogeneity properties of general soil chemical properties along a short (i.e. 52 m large) transect. Field measurements were carried out at the experimental farm of CIAM located in Mabegondo, A Coruña, Spain. The studied transect was marked following land slope, and 66 soil samples were collected at the 0-20 cm depth every 0.8 m. The soil properties analyzed were: pH (H2O ), organic carbon content, exchangeable Ca, Mg and K, exchangeable acidity (H + Al), exchangeable bases (SB), cation exchange capacity (CEC), percent base saturation (V) and extractable P. The soil properties studied showed various degrees of multifractality. The spatial distribution of pH was characterized by quasi-monofractal behaviour; CEC, (H+Al) and OM, presented a relatively low degree of multifractality, and the other soil properties studied showed stronger degrees of multifractality, being the highest one for Olsen extractable P. In general, the scaling features of the properties studied implied a multifractal nature, where the low and high density regions scaled differently.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


2009 ◽  
Vol 33 (5) ◽  
pp. 1507-1514 ◽  
Author(s):  
Sidney Rosa Vieira ◽  
Osvaldo Guedes Filho ◽  
Márcio Koiti Chiba ◽  
Heitor Cantarella

Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.


CATENA ◽  
2017 ◽  
Vol 154 ◽  
pp. 50-62 ◽  
Author(s):  
Igor Bogunovic ◽  
Sebastiano Trevisani ◽  
Miranda Seput ◽  
Darko Juzbasic ◽  
Boris Durdevic

2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071 ◽  
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

<p>An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (<em>Triticum aestivum </em>L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.</p><p><strong> </strong></p>


Author(s):  
Railton O. dos Santos ◽  
◽  
Laís B. Franco ◽  
Samuel A. Silva ◽  
George A. Sodré ◽  
...  

ABSTRACT The knowledge on the spatial variability of soil properties and crops is important for decision-making on agricultural management. The objective of this study was to evaluate the spatial variability of soil fertility and its relation with cocoa yield. The study was conducted over 14 months in an area cultivated with cocoa. A sampling grid was created to study soil chemical properties and cocoa yield (stratified in season, off-season and annual). The data were analyzed using descriptive and exploratory statistics, and geostatistics. The chemical attributes were classified using fuzzy logic to generate a soil fertility map, which was correlated with maps of crop yield. The soil of the area, except for the western region, showed possibilities ranging from medium to high for cocoa cultivation. Soil fertility showed positive spatial correlation with cocoa yield, and its effect was predominant only for the off-season and annual cocoa.


2020 ◽  
Vol 8 (1) ◽  
pp. 123-133
Author(s):  
Putri Alfira Zuraida ◽  
Yulia Nuraini

Fertile agricultural land encourages people to carry out agricultural cultivation activities. But in general, it has decreased soil fertility because its managed intensively without recycling of organic matter and has an impact on decreasing soil fertility chemically such as soil organic carbon and pH then leads to low productivity. Soybean is an agricultural product that necessary to develop because the demand for soybean consumption in East Java Province has always increased. However, Indonesia has not been able to fulfil this demand. One of the technology innovations that can be applied to improve soil fertility that has low organic matter and to increasing soybean production by providing input of quality organic fertilizer in the form of compost (Tithonia and Cow Dung). So this research is important to determine the effect of application cow dung compost and tithonia on soil chemical properties, the growth of soybean crops, and the correlations between soil chemical properties and soybean growth. This study used a randomized block design with 6 treatments and 3 replications. The result showed that the application of tithonia and cow dung compost shows a significant effect on soil chemical properties, plant height, and the number of leaves, but didn’t show a significant effect on the number of branches in every observation. Based on the correlation analysis, the results show a positive correlation between soil chemical properties and soybean growth.


2013 ◽  
Vol 37 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Gláucia Oliveira Islabão ◽  
Marília Alves Brito Pinto ◽  
Lisiane Priscila Roldão Selau ◽  
Ledemar Carlos Vahl ◽  
Luís Carlos Timm

One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS) is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA). Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM), soil total nitrogen (N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg), soil pH (pH), cation exchange capacity (CEC) at pH 7.0, soil base (V%) and soil aluminum saturation(m%). No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.


Author(s):  
F. K. Mbaka ◽  
H. O. Ndukhu ◽  
G. O. Oloo-Abucheli

Soil fertility decline is one of the major constraints in agricultural productivity. Biological nitrogen fixation (BNF) in legumes can offer a cost-effective and sustainable means towards soil fertility management. There is limited information on green-gram BNF enhancement through Rhizobium inoculation with rock phosphate fertilizer. The objective of this study was to determine the effects of Rhizobium and rock phosphate fertilizer application on soil chemical properties under green-gram varieties. The study was carried out at Chuka university horticultural research farm in two seasons (November 2019 - January 2020 and February - April 2020). A factorial experiment of 2 x 2 x 2 was laid out in a randomized complete block design (RCBD). There were three factors; varieties (N26 and KS20), rock phosphate (0 and 30 kg P ha-1) and Rhizobium inoculation (0 and 100 g ha-1) making a total of eight treatments which were replicated three times. Soil sampling and analyses were done for soil pH, fixed-N, total nitrogen (TN), exchangeable cations (EC), available Phosphorous (P), total organic carbon (TOC), and exchangeable potassium (K) before planting and after harvesting of green-grams for the two seasons. Data was analysed using GENSTAT 15th edition (P≤0.05). Results from both seasons indicated that combined application of rock phosphate at 30 kg P ha-1 and Rhizobium inoculation at 100 kg ha-1 showed significant (P≤0.05) higher increase in soil chemical properties over other treatments. However, treatment R1P1KS20 recorded significantly higher results in soil pH (7.54), TN (0.58%), TOC (3.45%), P (68.20 ppm) and EC (0.95 CmolKg-1), fixed-N (0.50%) and K (1.75 CmolKg-1). On the other hand treatment R0P0N26 recorded significant (P≤0.05) lower results in soil pH (5.23), TN (0.04%), TOC (1.86%), P (8.76 ppm), EC (0.21 CmolKg-1) and K (0.58 CmolKg-1). Therefore, Rhizobium inoculation in green-grams in combination with rock phosphate is an important legume nitrogen fixation enhancement method. This method is cost effective for farmers in sustainably supplementing nitrogen and phosphorous in their farms for improved soil fertility management. Based on the findings, combining Rhizobium 100g ha-1 and rock phosphate 30 kg P ha-1 with variety KS20 were recommended for a sustainable soil fertility management in Tharaka Nithi County.


Sign in / Sign up

Export Citation Format

Share Document