scholarly journals Spatial variability of soil fertility and its relation with cocoa yield

Author(s):  
Railton O. dos Santos ◽  
◽  
Laís B. Franco ◽  
Samuel A. Silva ◽  
George A. Sodré ◽  
...  

ABSTRACT The knowledge on the spatial variability of soil properties and crops is important for decision-making on agricultural management. The objective of this study was to evaluate the spatial variability of soil fertility and its relation with cocoa yield. The study was conducted over 14 months in an area cultivated with cocoa. A sampling grid was created to study soil chemical properties and cocoa yield (stratified in season, off-season and annual). The data were analyzed using descriptive and exploratory statistics, and geostatistics. The chemical attributes were classified using fuzzy logic to generate a soil fertility map, which was correlated with maps of crop yield. The soil of the area, except for the western region, showed possibilities ranging from medium to high for cocoa cultivation. Soil fertility showed positive spatial correlation with cocoa yield, and its effect was predominant only for the off-season and annual cocoa.

2020 ◽  
Vol 33 (1) ◽  
pp. 236-245
Author(s):  
EUDOCIO RAFAEL OTAVIO DA SILVA ◽  
MURILO MACHADO DE BARROS ◽  
MARCOS GERVASIO PEREIRA ◽  
JOÃO HENRIQUE GAIA GOMES ◽  
STEPHANY DA COSTA SOARES

ABSTRACT Studies on spatial variability of soil attributes of tropical pastures gather information that can assist in decision making about managements of these soils. The objective of the present study was to evaluate the spatial variability of soil chemical attributes and their effects on grass yield of Tifton 85. The experiment was carried out in an area of 3.91 ha at the Feno Rio Farm of the Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil. Soils of the 0-0.20 and 0.20-0.40 m layers were sampled considering an irregular sampling mesh, making a total of 50 georeferenced points. The parameters evaluated were: the soil chemical attributes pH, Al+3, Ca+2, Mg+2, Na+, K+, P, H+Al, and total organic carbon (TOC); and the Tifton 85 dry matter yield (DMY). The results of these parameters were subjected to descriptive statistics, linear correlation, and geostatistics, and maps were developed for the analyses. Regions with grass yields different from the general mean were found in the area, which presented mean grass yield of 2248 kg ha-1. The soil chemical parameters Na+, Ca+2, TOC, and H+Al were significantly correlated with DMY, confirming that they are important and affect the Tifton 85 grass yield. The mapping of the Tifton 85 cycle is important for understanding the variability of DMY. The investigation of areas with different productive potentials should be followed by development of maps of soil chemical attributes to correlate and understand the ratios that may be involved with these variations.


2019 ◽  
pp. 1236-1243
Author(s):  
Emmerson Rodrigues de Moraes ◽  
José Geraldo Mageste ◽  
Joicy Vitória Miranda Peixoto ◽  
Luis Augusto da Silva Domingues ◽  
Regina Maria Quintão Lana ◽  
...  

In sugarcane expansion areas where soil fertility restrictions regularly occur, soil preparing ameliorates soil physical and chemical properties to improve conditions for sugarcane crop development. Therefore, the aim of this study was to evaluate soil chemical attributes under different soil preparation methods for sugarcane cultivation at the first and second year of expansion area in the Cerrado biome. The experiment was conducted in an area previously used as pasture land for more than 10 years with Brachiaria decumbens without any soil correction. CTC-2 sugarcane variety was planted. The experiment was set up as a randomized block design with six treatments and four replications. The treatments were: desiccation-liming-plowing-harrowing; liming-plowing-harrowing; liming-harrowing-plowing-harrowing; desiccation-liming-direct planting; desiccation-liming-subsoiling, and harrowing-liming-plowing-harrowing. Soil attributes: organic matter, water pH, H++Al3+, Al3+, m, V, H2PO4-, K+, Ca2+, Mg2+, and S-SO4-2 were evaluated at 0-0.2, 0.2-0.4 and 0.4-0.6 m soil depth. The variables were submitted ANOVA, joint analysis and Tukey’s test (p < 0.05). The treatments including liming followed by harrowing, plowing and harrowing, and harrowing followed by liming, plowing and harrowing, resulted in the largest gains in soil fertility. In the first year of sugarcane cultivation, the no-tillage system proved to be sustainable and appropriate for sugarcane cultivation economically viable.


2004 ◽  
Vol 44 (12) ◽  
pp. 1241 ◽  
Author(s):  
W. E. Cotching ◽  
L. A. Sparrow ◽  
K. Hawkins ◽  
B. E. McCorkell ◽  
W. Rowley

Selected soil properties and paddock management characteristics were measured for 121 potato and poppy crops in north and northwest Tasmania to see if variation in these characteristics explain variation in crop yield. The soil properties we selected were those that previous work found had changed the most as a result of cropping and, therefore, may be affecting yield on the particular soil type. The soil properties and management characteristics that were significantly correlated with crop yield varied with crop and soil type. None of the soil characters had correlation coefficients greater than 0.63, probably reflecting the capacity of individual farmers to overcome particular soil limitations through their management of tillage, nutrition, irrigation, weeds and pathogens. On ferrosols, a visual score of soil structure was significantly correlated with potato yield (r = 0.57) and exchangeable aluminium was significantly correlated with poppy yield (r = 0.63). Exchangeable calcium (r = 0.54) and penetration resistance (r = 0.38) correlated positively and topdressed nitrogen (r = –0.49) correlated negatively with poppy alkaloid assay, an important determinant of overall poppy yield. On dermosols, depth to 2000 kPa penetration resistance (r = 0.60) and fertiliser P (r = –0.67) were correlated with potato yield, structure score correlated with poppy yield (r = 0.59), and penetration resistance with poppy assay (r = 0.52). On sodosols, fertiliser K (r = –0.41 and r = 0.55) and N (r = –0.45 and 0.42) correlated negatively with poppy yield and positively with poppy assay. On clay loam soils such as dermosols and ferrosols, increased topsoil cloddiness appears to be having a deleterious effect on crop yield. Cloddiness is readily assessed on these soils using the structure scorecard, which could therefore become a practical diagnostic test for farmers and advisers.


2010 ◽  
Vol 34 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Márcio Koiti Chiba ◽  
César Hideo Nagumo ◽  
Sônia Carmela Falci Dechen

Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.


Soil Systems ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 62 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
María Fandiño ◽  
Benjamín J. Rey ◽  
Jorge Dafonte ◽  
Javier J. Cancela

Soil properties show a high spatio-temporal variability, affecting productivity and crop quality within a given field. In new vineyard plantations, with changes in the initial topographic profile, this variability is exacerbated due to the incorporation of soil from different origins and qualities. The aim of the current study was to characterize the variability of soil properties in a newly established vineyard, and delineating zones for site-specific management of fertilization. For this purpose, the soil apparent electrical conductivity (ECa) in the first 150 cm was measured with an electromagnetic induction sensor. A soil sampling was performed following a regular grid (35 × 35 m, 149 samples), collecting samples down to 40 cm depth for determining soil chemical properties. Spatial variability was assessed through semivariogram calculation and ordinary kriging. The soil properties that better represent the variability in this newly established vineyard were pH, effective cation exchange capacity (ECEC), carbon content, clay and ECa. The ECa was homogeneous all over the vineyard, except for the area closer to the river where a greater human intervention had occurred, with contributions of external soil at a greater depth. Soil properties showed a great spatial variability. Interpolated maps allowed for detecting areas with a lack of nutrients in which a differential fertilization could be performed in search of a sustainable and balanced production. The information provided by the maps of pH, ECEC and carbon and potassium contents allow for performing a differential management of the vineyard in terms of fertilization. In addition, the results obtained suggest that the vineyard should be divided into two sectors for a differential irrigation management. The ECa was not significantly correlated to most of the soil properties determined in the current study; however, it allowed for a low-cost mapping of the vineyard soil and established large areas of management within the vineyard.


2013 ◽  
Vol 93 (3) ◽  
pp. 319-328 ◽  
Author(s):  
Noura Ziadi ◽  
Bernard Gagnon ◽  
Judith Nyiraneza

Ziadi, N., Gagnon, B. and Nyiraneza, J. 2013. Crop yield and soil fertility as affected by papermill biosolids and liming by-products. Can. J. Soil Sci. 93: 319–328. Papermill biosolids (PB) in combination with alkaline industrial residuals could benefit agricultural soils while diverting these biosolids from landfill. A greenhouse study was conducted to evaluate the effect of three types of PB at rates of 0, 30, and 60 wet Mg ha−1, as well as five liming by-products at 3 wet Mg ha−1 along with 30 Mg PB ha−1 on crop yield, nutrient accumulation, and soil properties. De-inking paper biosolids (DB, C/N of 65) were applied to soybean [Glycine max (L.) Merr.], and two combined PB (PB1, C/N of 31; and PB2, C/N of 14) were applied to dry bean (Phaseolus vulgaris L.) and barley (Hordeum vulgare L.), respectively. The liming by-products included lime mud (LM), wood ash (WA) from paper mills, commercial calcitic lime (CL), Mg dissolution by-product (MgD), and Mg smelting and electrolysis work (MgSE). Compared with the control, PB2 increased barley yield and total Mg and Na accumulation, and both PB increased plant N, P, and Ca accumulation in barley and dry bean. The impact of DB on soybean was limited. The addition of liming by-products to PB or DB did not affect crop attributes except the combination with MgSE, which severely reduced the growth of dry bean and, to a lesser extent, soybean. Soil NO3-N was immobilized following DB application, whereas there was a net release with both PB. Combining PB and liming by-products produced the greatest changes in soil properties at harvest. Generally, LM and CL raised pH and Mehlich-3 Ca, and MgSE caused a strong increase in Mehlich-3 Mg and Na and water-soluble Cl. When used with appropriate crops, biosolids from paper mills and alkaline residuals other than MgSE can efficiently enhance soil fertility by providing organic C and macronutrients for balanced crop fertilization.


2021 ◽  
Vol 5 ◽  
Author(s):  
Mercy Cheruto Kebenei ◽  
Monicah Mucheru-Muna ◽  
Felista Muriu-Ng'ang'a ◽  
Charles Kimani Ndung'u

Deteriorating soil fertility, low unreliable rainfall and soil moisture stress has resulted to low crop yields among farmers of sub-Saharan Africa (SSA), necessitating a search for more sustainable production practices. Zai technology has the ability to promote soil moisture retention and enhances soil fertility. A four-seasons field experiment was conducted to assess the impact of Zai technology combined with cattle manure and inorganic fertilizer on selected soil properties and sorghum yields in Kabati, Kitui County. The experiment was set up in a Randomized Complete Block Design (RCBD) with eight treatments replicated thrice with sorghum Gadam as the test crop. Soil sampling was done at the beginning of the first season and at the end of the fourth season at a dept of 0–15 cm across each plot for laboratory analyses. From the results, the increase in electrical conductivity was significant at p &lt; 0.05 in all the treatments after four cropping seasons. Total organic carbon significantly increased in Zai with cattle manure (p = 0.045), conventional with no input (p = 0.038) and conventional with cattle manure (p = 0.045). Available phosphorous significantly (p &lt; 0.05) increased in treatments under Zai technology while total nitrogen significantly (p &lt; 0.05) reduced after the four cropping seasons. There was a significant (p &lt; 0.05) interactive effect of the tested factors on soil pH, electrical conductivity, total nitrogen, and available phosphorous at the end of the experiment. Moreover, there was significant (p &lt; 0.05) interactive effects on grain yields (SR18 and SR19 seasons) and stover yields (SR18, LR19, and SR19 seasons), with higher yields being recorded in treatments under Zai technology. This study demonstrates the importance of Zai technology in increasing crop yield by trapping water and enhancing its retention and infiltration into the soil for uptake by plants. This study concluded that positive impacts on important soil properties and crop yield could be realized when Zai technology is utilized alongside either sole inorganics or a combination of organic and inorganic amendments and this could be used as a strategy to improve crop production in eastern Kenya and other similar areas.


2021 ◽  
Vol 3 (2) ◽  
pp. 65-71
Author(s):  
M. T. Folarin ◽  
A. J. Adeyemo ◽  
G. O. Elumalero ◽  
O. J. Olalekan ◽  
M. O Apenah ◽  
...  

Land is the most important endowment in nature, providing livelihood in both the agricultural and non-agricultural sectors. However, most areas of land previously developed from tropical rainforest have been degraded as a result of land misuse with nutrient mining and soil degradation presently considered as problems in arable farms. Hence, the extent to which land for crop production influences soil properties need to be studied to greater details due to variations in soils by location. The objective of the study is to investigate the effect of agricultural land use systems on the soil physical and chemical properties. Three representative fields with three replicates each which have been in active use for last 5 years were selected from each agricultural land use types: Cultivated (07.31° N 05.12° E 360.0 M), Agroforestry (07.31° N 05.21° E 373.5 M) and Grazing land (07.29° N 05.35° E 355.0 M). Five soil subsamples were collected from the depths of 0-20 and 20 - 40 cm each in a radial sampling. The data was subjected to analysis of variance (ANOVA) using Statistical Analytical System (SAS) and the means were separated using Duncan’s Multiple Range Test (DMRT) at P<0.05 significant level. The mean values of soil chemical properties are highest in the agroforestry land followed by cultivated and then in the grazing land. Grazing land shows the highest bulk density of (1.87 g/cm3), cultivated (1.30 g/cm3) and then agroforestry (1.24 g/cm3) with same trends recorded in particle density across the land use. The soils significantly responded to changes in land use systems through salient soil features which constitute soil properties governing soil fertility and productivity. Such human-induced change is not limited to surface soils but also the subsurface soils and has remarkable implication for ecosystem quality and productivity of the traditional low-external-input agriculture in the study area.


2015 ◽  
Author(s):  
Masato Oda ◽  
Yasukazu Hosen ◽  
Uchada Sukchan

Nitrogen (N) and Carbon (C) are popular indicators of soil fertility; however, they are not soil fertility itself. In fact, they may be seen as just two aspects of the one entity. Soil microbial biomass (SMB) is also one of soil fertility indicators; furthermore, recent study of co-evolution between plants and microorganisms raises an idea that SMB might be the entity of fertility. The correlation between SMB and crop yield has been found in some studies but not in others. Those studies were conducted from the standpoint of N stock balance; therefore, the correlation between soil properties before planting and plant yields were analyzed. Here, we show—in our analysis of harvest-time soil properties and crop yields—that SMB correlates more strongly than inorganic N, total N, or total C with average crop yield under a wide range of cultivation conditions. From the viewpoint of co-evolution, plant biomass is a part of the plant and soil microorganism system; therefore, increasing SMB will balance by increasing plant biomass. In addition, the SMB could increase independently from the plant growth by artificial organic matter input. This concept will break through the yield limitation of conventional farming.


2016 ◽  
Vol 154 (8) ◽  
pp. 1343-1361 ◽  
Author(s):  
J. F. HERENCIA ◽  
C. MAQUEDA

SUMMARYA comparative study of the effect of organic fertilization at different times and doses on soil fertility and crop yield was performed over 3 years in a calcareous loamy soil. Nutrient availability in the soil and macronutrient concentration in leaves and in the edible part of the plants was examined in plots that were previously handled conventionally and ecologically for several years. The organic fertilizers used were manure compost at two doses in plots after 4 years of organic management treatment, and green residues of previous crops in plots with 10 years of organic management. In general, soil organic carbon (C), nitrogen (N), phosphorous (P) and magnesium (Mg) contents were found to be considerably greater in organically fertilized soils in comparison with soil receiving mineral fertilizer (conventional treatment (CT)). For C and N, the highest contents were observed in the long-term organic treatment (OR). However, few differences were found for potassium (K) and sodium (Na). The results obtained for electrical conductivity and pH indicated that, in general, there were no significant differences between treatments. The differences in the values of EC and pH occurred among cultivation cycles irrespective of the type of fertilization, but there was a contradictory trend for each of the above parameters. The results obtained for leaves and the edible part of the plant indicated that, in general, there were no significant differences between treatments, except for P with a trend for higher P content in organic crops. The nitrate values in leaves showed great variability, making it difficult to draw conclusions. The associations of fertilization and the chemical properties of soil with nutrient content in crops were checked by principal component analysis (PCA). For soil data, different clusters were observed between CT and OR treatments. However, PCA showed that the influence of crop type on plant nutrient concentrations was greater than type of fertilization. The effect of fertilization on crop yield was variable depending on plant species. The results indicated that organic fertilization did not cause deficiencies in the nutrient content and yield of vegetables when compared with conventional fertilization, showing that ecological management can be used effectively.


Sign in / Sign up

Export Citation Format

Share Document