scholarly journals A simple and flexible movement control method for a hexapod walking robot

2021 ◽  
Vol 11 (5) ◽  
pp. 2396
Author(s):  
Jong Suk Lim ◽  
Hyung-Woo Lee

This paper presents a method of utilizing a non-contact position sensor for the tilting and movement control of a rotor in a rotary magnetic levitation motor system. This system has been studied with the aim of having a relatively simple and highly clean alternative application compared to the spin coater used in the photoresist coating process in the semiconductor wafer process. To eliminate system wear and dust problems, a shaft-and-bearing-free magnetic levitation motor system was designed and a minimal non-contact position sensor was placed. An algorithm capable of preventing derailment and precise movement control by applying only control without additional mechanical devices to this magnetic levitation system was proposed. The proposed algorithm was verified through simulations and experiments, and the validity of the algorithm was verified by deriving a precision control result suitable for the movement control command in units of 0.1 mm at 50 rpm rotation drive.


2021 ◽  
Author(s):  
Nadiah Kamaruddin ◽  
Nurfuzaini A Karim ◽  
M Ariff Naufal Hasmin ◽  
Sunanda Magna Bela ◽  
Latief Riyanto ◽  
...  

Abstract Field A is a mature hydrocarbon-producing field located in eastern Malaysia that began producing in 1968. Comprised of multistacked reservoirs at heights ranging from 4,000 to 8,000 ft, they are predominantly unconsolidated, requiring sand exclusion from the start. Most wells in this field were completed using internal gravel packing (IGP) of the main reservoir, and particularly in shallower reservoirs. With these shallower reservoirs continuously targeted as good potential candidates, identifying a sustainable sand control solution is essential. Conventional sand control methods, namely IGP, are normally a primary choice for completion; however, this method can be costly, which requires justification during challenging economic times. To combat these challenges, a sand consolidation system using resin was selected as a primary completion method, opposed to a conventional IGP system. Chemical sand consolidation treatments provide in situ sand influx control by treating the incompetent formation around the wellbore itself. The initial plan was to perform sand consolidation followed by a screenless fracturing treatment; however, upon drilling the targeted zone and observing its proximity to a water zone, fracturing was stopped. With three of eight zones in this well requiring sand control, a pinpoint solution was delivered in stages by means of a pump through with a packer system [retrievable test treat squeeze (RTTS)] at the highest possible accuracy, thus ensuring treatment placement efficiency. The zones were also distanced from one another, requiring zonal isolation (i.e., mechanical isolation, such as bridge plugs, was not an option) as treatments were deployed. While there was a major challenge in terms of mobilization planning to complete this well during the peak of a movement control order (MCO) in Malaysia, optimal operations lead to a long-term sand control solution. Well unloading and test results upon well completion provided excellent results, highlighting good production rates with zero sand production. The groundwork processes of candidate identification down to the execution of sand consolidation and temporary isolation between zones are discussed. Technology is compared in terms of resin fluid system types. Laboratory testing on the core samples illustrates how the chemical consolidation process physically manifests. This is used to substantiate the field designs, execution plan, initial results, follow-up, lessons learned, and best practices used to maximize the life of a sand-free producer well. This success story illustrates potential opportunity in using sand consolidation as a primary method in the future.


2014 ◽  
Vol 651-653 ◽  
pp. 831-834
Author(s):  
Xi Pei Ma ◽  
Bing Feng Qian ◽  
Song Jie Zhang ◽  
Ye Wang

The autonomous navigation process of a mobile service robot is usually in uncertain environment. The information only given by sensors has been unable to meet the demand of the modern mobile robots, so multi-sensor data fusion has been widely used in the field of robots. The platform of this project is the achievement of the important 863 Program national research project-a prototype nursing robot. The aim is to study a mobile service robot’s multi-sensor information fusion, path planning and movement control method. It can provide a basis and practical use’s reference for the study of an indoor robot’s localization.


2014 ◽  
Vol 2014.52 (0) ◽  
pp. _603-1_-_603-2_
Author(s):  
Takuma HAMADA ◽  
Shouyu WANG ◽  
Yinlai JIANG

2014 ◽  
Vol 670-671 ◽  
pp. 1330-1336 ◽  
Author(s):  
Viacheslav Pshikhopov ◽  
Mikhail Medvedev ◽  
Anatoly Gaiduk

This paper is devoted to vehicle movement control method based on the natural energy recovery [1] and position-path control approach [2,3,4]. This method ensures the fullest use of kinematic energy of the controlled vehicle. Method is applied for path profile with variable height. Vehicle velocity is changed to minimize kinematic energy losses. The time of the path passage is accounted in the designed method. In this report typical profiles of the controlled vehicle are considered. In general case the vehicle velocity program is developed on base of solutions for typical profiles. The vehicle velocity program is changing while vehicle is moving. The developed method is applied for control of trains implemented with electrical power drives. On base of train model studying it is proved that optimal mode of trains acceleration is maximal traction. The maximal traction ensures minimum energy consumption of train drives. But the traction of trains is extreme function of the speed wheel slip [5, 6]. Therefore the new extreme control for the train drives is developed. This method supports trains traction in extreme value. The developed method is implemented in simulator based on Matlab and Universal Mechanism. Movement of a freight train on a real track section is simulated.


2011 ◽  
Author(s):  
H. Siswoyo Jo ◽  
N. Mir-Nasiri ◽  
Nader Barsoum ◽  
Jeffrey Frank Webb ◽  
Pandian Vasant

Author(s):  
Herman Tolle ◽  
Kohei Arai

Head movement has been found to be a natural way of interaction. It can be used as an alternative control method and provides accessibility for users when used in human computer interface solutions. The combination of Head-mounted displays (HMDs) with mobile devices, provide an innovation of new low cost of human-computer interaction. Such devices are hands-free systems. In this paper, we introduce a new method for recognizing head movement as the controller of mobile application and proposed a new control system using head movement only. The proposed method can determine specific head pose movement and respond it as a controller. The implementation of a music player application on an iOS devices shows that the proposed method is appropriate for a new experience of real-time human-computer interaction with head movement control only.


Sign in / Sign up

Export Citation Format

Share Document