scholarly journals Infectivity and viability of dengue virus infected hepatocytes cocultured with peripheral blood mononuclear cells from a healthy subject

2020 ◽  
Vol 29 (3) ◽  
pp. 260-7
Author(s):  
Sekar Asri Tresnaningtyas ◽  
Fithriyah Sjatha ◽  
Beti Ernawati Dewi

BACKGROUND Dengue virus (DENV) can infect and replicate in monocytes, resulting in antibody-dependent enhancement. The liver is the main target of DENV, and the infection mechanisms of DENV include direct cytopathic effects (CPEs) of the virus, mitochondrial dysfunction, and effect of cellular and humoral immune factors in the liver. This study was aimed to explore the infectivity of DENV and viability of human hepatocytes using Huh 7it-1 cells cocultured with peripheral blood mononuclear cells (PBMCs). METHODS Huh 7it-1 cells were infected with dengue virus serotype-2 (DENV-2) New Guinea C strain at multiplicity of infection of 0.5 and 1 FFU/cell, and cocultured in vitro with and without adherent PBMCs. The infectivity of DENV was assessed by immunoperoxidase staining. The viability of Huh 7it-1 cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, a tetrazole) assay and trypan blue staining. Data were statistically analyzed by Shapiro–Wilk and analysis of variance for normality significances. RESULTS The result showed that addition of PBMCs to DENV-2 infected Huh 7it-1 cells decreased the infectivity of DENV (15–37%). DENV-2 infection decreased the viability of Huh 7it-1 cells (15.5–20.8%). Despite the decrease in infectivity of DENV, the addition of PBMCs increased the Huh 7it-1 cells viability (4.5–10.2%). CONCLUSIONS Addition of PBMCs to Huh 7it-1 cells that are infected with DENV-2 decreased the infectivity of DENV and increased Huh 7it-1 cells viability.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1037
Author(s):  
Patricia Ruiz-Limon ◽  
Maria L. Ladehesa-Pineda ◽  
Clementina Lopez-Medina ◽  
Chary Lopez-Pedrera ◽  
Maria C. Abalos-Aguilera ◽  
...  

Endothelial dysfunction (ED) is well known as a process that can lead to atherosclerosis and is frequently presented in radiographic axial spondyloarthritis (r-axSpA) patients. Here, we investigated cellular and molecular mechanisms underlying r-axSpA-related ED, and analyzed the potential effect of peripheral blood mononuclear cells (PBMCs) in promoting endothelial injury in r-axSpA. A total of 30 r-axSpA patients and 32 healthy donors (HDs) were evaluated. The endothelial function, inflammatory and atherogenic profile, and oxidative stress were quantified. In vitro studies were designed to evaluate the effect of PBMCs from r-axSpA patients on aberrant endothelial activation. Compared to HDs, our study found that, associated with ED and the plasma proatherogenic profile present in r-axSpA, PBMCs from these patients displayed a pro-oxidative, proinflammatory, and proatherogenic phenotype, with most molecular changes noticed in lymphocytes. Correlation studies revealed the relationship between this phenotype and the microvascular function. Additional in vitro studies confirmed that PBMCs from r-axSpA patients promoted endothelial injury. Altogether, this study suggests the relevance of r-axSpA itself as a strong and independent cardiovascular risk factor, contributing to a dysfunctional endothelium and atherogenic status by aberrant activation of PBMCs. Lymphocytes could be the main contributors in the development of ED and subsequent atherosclerosis in this pathology.


2021 ◽  
Vol 134 ◽  
pp. 58-63
Author(s):  
Matheus Fujimura Soares ◽  
Larissa Martins Melo ◽  
Jaqueline Poleto Bragato ◽  
Amanda de Oliveira Furlan ◽  
Natália Francisco Scaramele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document