Validation of the Continuous-Energy Monte Carlo Criticality-Safety Analysis System MVP and JENDL-3.2 Using the Internationally Evaluated Criticality Benchmarks

2003 ◽  
Vol 145 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Susumu Mitake
Author(s):  
Jean A.D. Salomé ◽  
Claubia Pereira ◽  
Jonathan B.A. Assunsio

2021 ◽  
Vol 247 ◽  
pp. 10003
Author(s):  
N. García-Herranz ◽  
J. Rodríguez ◽  
A. Jiménez-Carrascosa ◽  
O. Cabellos

Monte Carlo neutron transport codes can be used for high-fidelity predictions of the performance of nuclear systems. However, validation against experiments is required in order to establish the credibility in the results and identify the inaccuracies due to the used calculation scheme and associated databases. The International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP) contains criticality safety benchmarks derived from experiments that have been performed at various nuclear critical facilities around the world and are very valuable for validation purposes. The main objective of this work is the identification and modelling of experimental benchmarks included at ICSBEP in support of the validation of Monte Carlo neutron transport calculations when applied to fast systems, and in particular, KENO-VI and associated AMPX-formatted continuous-energy libraries from SCALE package. In such systems, the predicted k-eff values can be very sensitive to the treatment of nuclear data in the Unresolved Resonance Region (URR). Consequently, benchmarks with intermediate and fast spectra are identified and modelled with KENO-VI. Then, calculated results with and without probability tables in the URR are compared with each other in order to identify the most sensitive configurations to the URR. As a result of the proposed study, recommendations are given about the benchmarks that should be modelled and analysed to qualify the processed continuous-energy libraries before their use in Monte Carlo transport codes for practical fast reactor applications.


2018 ◽  
Vol 114 ◽  
pp. 495-509 ◽  
Author(s):  
Jaerim Jang ◽  
Wonkyeong Kim ◽  
Sanggeol Jeong ◽  
Eun Jeong ◽  
Jinsu Park ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 132-151
Author(s):  
Vito Vitali ◽  
Florent Chevallier ◽  
Alexis Jinaphanh ◽  
Andrea Zoia ◽  
Patrick Blaise

Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order to investigate the reactor behaviour, each with a distinct point of view: the former is related to fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently implemented and tested in the development version of TRIPOLI-4®, using a modified version of the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However, for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.


2021 ◽  
Vol 154 ◽  
pp. 108107
Author(s):  
Tagor Malem Sembiring ◽  
Surian Pinem ◽  
Donny Hartanto ◽  
Peng Hong Liem

2011 ◽  
Vol 168 (3) ◽  
pp. 226-241 ◽  
Author(s):  
Brian C. Kiedrowski ◽  
Forrest B. Brown ◽  
Paul P. H. Wilson

Sign in / Sign up

Export Citation Format

Share Document