Design of a High-Temperature Fluoride Salt Test Facility (HT-FSTF)

2019 ◽  
Author(s):  
K. Cheng ◽  
H. Lin ◽  
X. Sun ◽  
S. Zhang
2014 ◽  
Vol 64 ◽  
pp. 511-517 ◽  
Author(s):  
Graydon L. Yoder ◽  
Adam Aaron ◽  
Burns Cunningham ◽  
David Fugate ◽  
David Holcomb ◽  
...  

Author(s):  
Chenglong Wang ◽  
Yao Xiao ◽  
Jianjun Zhou ◽  
Dalin Zhang ◽  
Suizheng Qiu ◽  
...  

The Fluoride-salt-cooled High temperature Reactor (FHR) is new reactor concept-about a decade old which is mainly on going in China and U.S. The preliminary thermal-hydraulic studies of the Fluoride salt cooled High temperature Test Reactor (FHTR) is necessary for the development of the FHR technology. In this paper, the thermal-hydraulics of FHTR (also called TMSR-SF) designed by Shanghai Instituted of Applied Physics (SINAP) is studied in different power modes. The temperature distributions of the coolant and the fuel pebble are obtained using a steady-state thermal-hydraulic analysis code for FHR. The comprehensive local flow and heat transfer are investigated by computational fluid dynamics (CFD) for the locations where may have the maximum pebble temperature based on the results from single channel analysis. The profiles of temperature, velocity, pressure and Nu of the coolant on the surface of the pebble as well as the temperature distribution of a fuel pebble are obtained and analyzed. Numerical results showed that the results of 3-D simulation are in reasonable agreement with that of single channel model and also illustrated safety operation of the preliminary designed TMSR-SF in different power mode.


2015 ◽  
Author(s):  
Adam M. Aaron ◽  
Richard Burns Cunningham ◽  
David L. Fugate ◽  
David Eugene Holcomb ◽  
Roger A. Kisner ◽  
...  

2015 ◽  
Author(s):  
Charles Forsberg ◽  
Lin-wen Hu ◽  
Per Peterson ◽  
Kumar Sridharan

Author(s):  
R. Radhakrishnan ◽  
P. K. Gounder ◽  
S. Kavidass ◽  
V. Zakkay ◽  
R. Dellefield

NYU has an ongoing research program which is being funded by DOE to test three types of high-pressure, high-temperature filters. The main objectives of the testing program are: (1) to establish the performance capability of the filters under high-pressure and high-temperature conditions; and (2) to evaluate the dust collection efficiency. Shakedown tests for a duration of about 50 hours was completed during October 1986. Testing of the electrostatic precipitator (ESP) is in progress. The first test with ESP was performed during the middle of November 1986. The operating experience with respect to the test facility, and in particular with the particulate sampling systems, is reported in this paper. Additionally, some test results are also discussed.


Author(s):  
Glen Jukkola ◽  
Armand Levasseur ◽  
Dave Turek ◽  
Bard Teigen ◽  
Suresh Jain ◽  
...  

ALSTOM is developing and testing a new and more efficient coal combustion technology, including a new type of steam generator known as a “circulating moving bed (CMBTM) combustion system combustor.” The CMBTM combustion system technology involves a novel method of solid fuel combustion and heat transfer. In this design, a heat exchanger will heat the energy cycle working fluid, steam or air, to the high temperature levels required for advanced power generation systems. This will produce a step change in both performance and capital costs relative to today’s pulverized coal and fluid bed boiler designs. In addition to high temperature Rankine cycles, the CMBTM combustion system is an enabling technology for hydrogen production and CO2 capture from combustion systems utilizing innovative chemical looping airblown gasification and syngas decarbonization. ALSTOM’s 3MWth Multi-Use Combustion Test Facility has been modified to allow operation in CMBTM combustion system mode. This paper summarizes the results of this program, which includes performance results from pilot plant testing. Participants include the U.S. DOE, ALSTOM, the University of Massachusetts, and the Massachusetts Institute of Technology. The total program cost is $2,485,468 with the DOE’s National Energy Technology Laboratory (NETL) providing 60% of the funding under Cooperative Agreement No. DE-FC26-01NT41223.


Sign in / Sign up

Export Citation Format

Share Document