Performance Results With ALSTOM’s Circulating Moving Bed Combuster™

Author(s):  
Glen Jukkola ◽  
Armand Levasseur ◽  
Dave Turek ◽  
Bard Teigen ◽  
Suresh Jain ◽  
...  

ALSTOM is developing and testing a new and more efficient coal combustion technology, including a new type of steam generator known as a “circulating moving bed (CMBTM) combustion system combustor.” The CMBTM combustion system technology involves a novel method of solid fuel combustion and heat transfer. In this design, a heat exchanger will heat the energy cycle working fluid, steam or air, to the high temperature levels required for advanced power generation systems. This will produce a step change in both performance and capital costs relative to today’s pulverized coal and fluid bed boiler designs. In addition to high temperature Rankine cycles, the CMBTM combustion system is an enabling technology for hydrogen production and CO2 capture from combustion systems utilizing innovative chemical looping airblown gasification and syngas decarbonization. ALSTOM’s 3MWth Multi-Use Combustion Test Facility has been modified to allow operation in CMBTM combustion system mode. This paper summarizes the results of this program, which includes performance results from pilot plant testing. Participants include the U.S. DOE, ALSTOM, the University of Massachusetts, and the Massachusetts Institute of Technology. The total program cost is $2,485,468 with the DOE’s National Energy Technology Laboratory (NETL) providing 60% of the funding under Cooperative Agreement No. DE-FC26-01NT41223.

Author(s):  
Arturo Manrique Carrera ◽  
Jeevan Jayasuriya ◽  
Torsten Fransson

Emission demands for gas turbine utilization will become more stringent in the coming years. Currently different techniques are used to reach low levels of NOx emissions. One possible solution is the Staged Lean Catalytic Combustion. In this concept a catalysts arrangement is used to generate high temperature combustion gases. The high temperature gases could be used to feed a second combustion stage in which more fuel is injected. In this work a series of experiments were performed at the Catalytic Combustion High Pressure Test Facility at the Royal Institute of Technology (KTH) in Sweden. The fuel used was a simulated gasified biomass and the catalytic combustor consisted of an arrangement of different catalysts, e.g. bimetallic, hexaaluminates, and perovskites catalysts. These were used as, ignition catalyst, medium temperature catalyst and high temperature catalyst respectively. The tests were performed between 5 and 13.5 bar, and the overall conversion varied between 60% and 70% and the temperature of flue gases could reach 750°C and contains high level of oxygen. The determining factor to control the exit gas temperature was the richness of the mixture (λ value). On the other hand, the increased pressure had a moderate negative effect in the overall fuel conversion. This effect is stronger at leaner mixtures compared to richer ones. Moreover, λ value and also pressure affected the temperature distribution along the reactor. The utilization of a lean catalytic combustion approach makes possible the use of a post catalytic combustion. In this region additional fuel is injected to fully burn the exiting gases and increase the exit temperature to the desired levels. This staged lean catalytic combustion approach could resemble moderate levels exhaust gas recirculation techniques and/or high air temperature combustion and it is also briefly examined in the present work.


Author(s):  
Andrew Messenger ◽  
Richard Williams ◽  
Grant Ingram ◽  
Simon Hogg ◽  
Philip Reggentin

Abstract This paper reports on the latest phase of the development of a new rotating machinery sealing technology, which was a successful seal test in a high temperature steam test facility at TU Brauschweig in Germany. The “Aerostatic Seal” is a dynamic clearance seal that is capable of maintaining very small clearances with a rotor and has the potential for a wide range of rotating machinery applications. It has been developed in recent years at Durham University, UK, in collaboration with a major OEM, with a focus on steam turbine sealing, and has previously been reported on in a number of ASME Turbo Expo papers. Previous work has reported on the design tool, and two air test facilities; testing in steam addressed the effect of high temperature components and the working fluid, and was an opportunity to verify the design system. The seal is a development of a retractable gland seal and so in a low load condition it is retracted from the rotor with a large rotor clearance and then when the pressure ratio is sufficient moves to an operational small clearance. At its operational clearance the seal is capable of moving with rotor vibrations which means the design clearance can be smaller than any expected rotor movement. The benefits include a significant reduction in leakage when compared to conventional sealing technologies and also the ability to react to large transients or thermal growths caused by rapid changes in machine loads and speeds. The seal is shown to operate well in this environment and this work moves the technology closer to deployment in industry.


Author(s):  
Roger Anderson ◽  
Fermin Viteri ◽  
Rebecca Hollis ◽  
Ashley Keating ◽  
Jonathan Shipper ◽  
...  

Future fossil-fueled power generation systems will require carbon capture and sequestration to comply with government green house gas regulations. The three prime candidate technologies that capture carbon dioxide (CO2) are pre-combustion, post-combustion and oxy-fuel combustion techniques. Clean Energy Systems, Inc. (CES) has recently demonstrated oxy-fuel technology applicable to gas turbines, gas generators, and reheat combustors at their 50MWth research test facility located near Bakersfield, California. CES, in conjunction with Siemens Energy, Inc. and Florida Turbine Technologies, Inc. (FTT) have been working to develop and demonstrate turbomachinery systems that accommodate the inherent characteristics of oxy-fuel (O-F) working fluids. The team adopted an aggressive, but economical development approach to advance turbine technology towards early product realization; goals include incremental advances in power plant output and efficiency while minimizing capital costs and cost of electricity [1]. Proof-of-concept testing was completed via a 20MWth oxy-fuel combustor at CES’s Kimberlina prototype power plant. Operability and performance limits were explored by burning a variety of fuels, including natural gas and (simulated) synthesis gas, over a wide range of conditions to generate a steam/CO2 working fluid that was used to drive a turbo-generator. Successful demonstration led to the development of first generation zero-emission power plants (ZEPP). Fabrication and preliminary testing of 1st generation ZEPP equipment has been completed at Kimberlina power plant (KPP) including two main system components, a large combustor (170MWth) and a modified aeroderivative turbine (GE J79 turbine). Also, a reheat combustion system is being designed to improve plant efficiency. This will incorporate the combustion cans from the J79 engine, modified to accept the system’s steam/CO2 working fluid. A single-can reheat combustor has been designed and tested to verify the viability and performance of an O-F reheater can. After several successful tests of the 1st generation equipment, development started on 2nd generation power plant systems. In this program, a Siemens SGT-900 gas turbine engine will be modified and utilized in a 200MWe power plant. Like the 1st generation system, the expander section of the engine will be used as an advanced intermediate pressure turbine and the can-annular combustor will be modified into a O-F reheat combustor. Design studies are being performed to define the modifications necessary to adapt the hardware to the thermal and structural demands of a steam/CO2 drive gas including testing to characterize the materials behavior when exposed to the deleterious working environment. The results and challenges of 1st and 2nd generation oxy-fuel power plant system development are presented.


2012 ◽  
Vol 468-471 ◽  
pp. 1313-1321
Author(s):  
Shi Jie Liu ◽  
Wen Sheng Yu ◽  
Wu Chen

Some suggestions for developing new working fluids for moderate-high-temperature heat pump with excellent thermal and environmental performance were given firstly in this paper. The theoretical and experimental performance analysis of new-developed working fluids M1-M6 was carried out. The theoretical performance results showed that M1-M6 had high heating efficiency and GWP (Global Warming Potential) of M2 was less than 150. The experimental results showed that M5 had higher thermal efficiency than other two working fluids under same working condition. At the ambient temperature respectively of 30 Centigrade Degree and 40 Centigrade Degree, it took 70 and 65 minutes by the heat pump charged with M5 as working fluid to heat 100 liters of water respectively from 30 Centigrade Degree to 80 Centigrade Degree. Meanwhile the system’s COP (Coefficient of Performance) was respectively 2.9 and 3.0.


Crisis ◽  
2013 ◽  
Vol 34 (6) ◽  
pp. 434-437 ◽  
Author(s):  
Donald W. MacKenzie

Background: Suicide clusters at Cornell University and the Massachusetts Institute of Technology (MIT) prompted popular and expert speculation of suicide contagion. However, some clustering is to be expected in any random process. Aim: This work tested whether suicide clusters at these two universities differed significantly from those expected under a homogeneous Poisson process, in which suicides occur randomly and independently of one another. Method: Suicide dates were collected for MIT and Cornell for 1990–2012. The Anderson-Darling statistic was used to test the goodness-of-fit of the intervals between suicides to distribution expected under the Poisson process. Results: Suicides at MIT were consistent with the homogeneous Poisson process, while those at Cornell showed clustering inconsistent with such a process (p = .05). Conclusions: The Anderson-Darling test provides a statistically powerful means to identify suicide clustering in small samples. Practitioners can use this method to test for clustering in relevant communities. The difference in clustering behavior between the two institutions suggests that more institutions should be studied to determine the prevalence of suicide clustering in universities and its causes.


Author(s):  
Ashraf M. Salama

With an acceptance rate that does not exceed 25% of the total papers and articles submitted to the journal, IJAR – International Journal of Architectural Research is moving forward to position itself among the leading journals in architecture and urban studies worldwide. As this is the case since the beginning of volume 5, issue 1, March 2011, one must note that the journal has been covered by several data and index bases since its inception including Avery Index to Architectural Periodicals, EBSCO-Current Abstracts-Art and Architecture, INTUTE, Directory of Open Access Journals, Pro-Quest, Scopus-Elsevier and many university library databases across the globe. This is coupled with IJAR being an integral part of the archives and a featured collection of ArchNet and the Aga Khan Documentation Centre at MIT: Massachusetts Institute of Technology, Cambridge, MA.In 2014, IJAR was included in Quartile 2 / Q2 list of Journals both in ‘Architecture’ and ‘Urban Studies.’ As of May 2015, IJAR is ranked 23 out of 83 journals in ‘Architecture’ and 59 out of 119 in ‘Urban Studies.’ Rankings are based on the SJR (SCImago Journal Ranking); an Elsevier- SCOPUS indicator that measures the scientific influence of the average article in a journal. SJR is a measure of scientific influence of scholarly journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from. See here for more information (http://www.scimagojr.com/index.php) and (http://www.journalmetrics.com/sjr.php). While the journal is now on top of many of the distinguished journals in Elsevier- SCOPUS database, we will keep aspiring to sustain our position and move forward to Q1 group list and eventually in the top 10 journal list in the field. However, this requires sustained efforts and conscious endeavours that give attention to quality submissions through a rigorous review process. This edition of IJAR: volume 9, issue 2, July 2015 includes debates on a wide spectrum of issues, explorations and investigations in various settings. The issue encompasses sixteen papers addressing cities, settlements, and projects in Europe, South East Asia, and the Middle East. Papers involve international collaborations evidenced by joint contributions and come from scholars in universities, academic institutions, and practices in Belgium; Egypt; Greece; Italy; Jordan; Malaysia; Palestine; Qatar; Saudi Arabia; Serbia; Spain; Turkey; and the United Kingdom. In this editorial I briefly outline the key issues presented in these papers, which include topics relevant to social housing, multigenerational dwelling, practice-based research, sustainable design and biomimetic models, learning environments and learning styles, realism and the post modern condition, development and planning, urban identity, contemporary landscapes, and cultural values and traditions.


Sign in / Sign up

Export Citation Format

Share Document