Spectroelectrochemistry: A survey of in situ spectroscopic techniques (Technical Report)

1998 ◽  
Vol 70 (7) ◽  
pp. 1395-1414 ◽  
Author(s):  
W. Plieth ◽  
G. S. Wilson ◽  
C. Gutiérrez de la Fe
1998 ◽  
Vol 70 (12) ◽  
pp. 2409-2412 ◽  
Author(s):  
W. Plieth ◽  
G. S. Wilson ◽  
C. Gutiérrez de la Fe

2020 ◽  
Vol 75 (9-10) ◽  
pp. 369-376
Author(s):  
Ayesha Riaz ◽  
Muhammad Adnan Iqbal ◽  
Haq Nawaz Bhatti ◽  
Muhammad Shahid

AbstractTwo meta-xylyl linked tetrakis-benzimidazolium salts (L1-L2) as multidentate ligands and two respective silver complexes (C1 and C2) were synthesized. A multistep reaction was done at room temperature, starting with simple benzimidazole and alkyl halides, going through precursors and salt formation by reflux and finally in situ deprotonation of tetrabenzimidazolium salts with Ag2O to yield respective tetra-nuclear Ag(I)-N-heterocyclic Carbene (NHC) complexes. Propyl and butyl groups were bonded at the terminal positions of tetra-azolium open chain salts. Characterization of compounds was done by analytical and spectroscopic techniques. On the basis of spectroscopic data, a chemical structure with open chains having four Ag(I) ions sandwiched between NHC layers was established. Potential of synthesized complexes (C1 & C2) for wound contraction was evaluated and compared with standard wound contraction gel. Percentage wound contraction of both complexes was found very close to that of standard drug used in parallel.


1999 ◽  
Author(s):  
James Markham ◽  
Joseph Cosgrove ◽  
David Marran ◽  
Jorge Neira ◽  
Chad Nelson ◽  
...  

2015 ◽  
Author(s):  
Murugan Veerapandian ◽  
Suresh Neethirajan

Hybridization of distinct materials into a single nanoplatform is relevant to advance material’s properties for functional application such as biosensor platform. We report the synthesis and characterization of nanosheets of graphene oxide decorated with hybrid nanoparticles of silver-ruthenium bipyridine complex (Ag@[Ru(bpy)3]2+) core and chitosan shell. Hybrid nanoparticles were first obtained through a sequential wet-chemical approach using in situ reduction, electrostatic and coordination reaction. Oxygenated functional groups of graphene oxide and abundant amine groups of chitosan layer on the surface of hybrid nanoparticles allowed the functionalization reaction. Changes in intrinsic optical, chemical and structural properties of graphene oxide due to hybrid nanoparticles were studied in depth using spectroscopic techniques and an electron microscope. Electrodes modified with nanosheets of graphene oxide-hybrid nanoparticles retain the biocompatibility and displayed an amplified redox property suitable for a broad range of sensing studies.


2020 ◽  
Vol 12 (7) ◽  
pp. 1053 ◽  
Author(s):  
Andrea Taramelli ◽  
Sergio Cappucci ◽  
Emiliana Valentini ◽  
Lorenzo Rossi ◽  
Iolanda Lisi

An application of the FHyL (field spectral libraries, airborne hyperspectral images and topographic LiDAR) method is presented. It is aimed to map and classify bedforms in submerged beach systems and has been applied to Sabaudia coast (Tirrenyan Sea, Central Italy). The FHyl method allows the integration of geomorphological observations into detailed maps by the multisensory data fusion process from hyperspectral, LiDAR, and in-situ radiometric data. The analysis of the sandy beach classification provides an identification of the variable bedforms by using LiDAR bathymetric Digital Surface Model (DSM) and Bathymetric Position Index (BPI) along the coastal stretch. The nearshore sand bars classification and analysis of the bed form parameters (e.g., depth, slope and convexity/concavity properties) provide excellent results in very shallow waters zones. Thanks to well-established LiDAR and spectroscopic techniques developed under the FHyL approach, remote sensing has the potential to deliver significant quantitative products in coastal areas. The developed method has become the standard for the systematic definition of the operational coastal airborne dataset that must be provided by coastal operational services as input to national downstream services. The methodology is also driving the harmonization procedure of coastal morphological dataset definition at the national scale and results have been used by the authorities to adopt a novel beach management technique.


2020 ◽  
Vol 11 (33) ◽  
pp. 8793-8799
Author(s):  
Charles J. McMonagle ◽  
Priyanka Comar ◽  
Gary S. Nichol ◽  
David R. Allan ◽  
Jesús González ◽  
...  

In situ high-pressure single-crystal diffraction and spectroscopic techniques have been used to study a previously unreported Cu-framework bis[1-(4-pyridyl)butane-1,3-dione]copper(ii) (CuPyr-I).


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 482
Author(s):  
Richard Chen ◽  
Mehmet Kerem Gokus ◽  
Silvina Pagola

This report describes aspects of our previous studies of the mechanochemical synthesis of charge transfer complexes of the electron donor tetrathiafulvalene, which are relevant to the use of laboratory X-ray powder diffraction for ex situ monitoring of mechanochemical reactions toward investigating their mechanisms. In particular, the reaction of tetrathiafulvalene and chloranil was studied under neat mechanochemical conditions and liquid-assisted grinding with diethyl ether (1 μL/mg). The product in both cases is the green tetrathiafulvalene chloranil polymorph and the mechanism of the redox reaction is presumably the same. However, while the kinetic profile of the neat mechanochemical synthesis was fitted with a second-order rate law, that of the overall faster liquid-assisted grinding reaction was fitted with the Ginstling-Brounshtein 3D diffusion-controlled model. Hence, the diffusional processes and mass transfer bringing the reactants together and separating them from products must be different. Diffraction measurements sensitive to crystalline phases and amorphous material, combined with in situ monitoring by spectroscopic techniques, will ultimately afford a better understanding of mechanochemical reaction mechanisms, a hot topic in mechanochemistry.


Sign in / Sign up

Export Citation Format

Share Document