Tissue-specific peptide pools. Generation and function

2000 ◽  
Vol 72 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Vadim T. Ivanov ◽  
Oleg N. Yatskin ◽  
Olga A. Kalinina ◽  
Marina M. Philippova ◽  
Andrei A. Karelin ◽  
...  

Systematic analysis of several tissue extracts for peptide components followed by bioactivity studies leads to formulation of the concept of "tissue-specific peptide pools". According to that concept the endogenous proteolysis of proteins with well-established functions, such as hemoglobin, actin, and cellular enzymes in tissues leads to formation of the sets (or pools) of bioactive peptides. The sets are tissue-specific on one hand and conservative in a given tissue at normal conditions on the other. The content and the composition of pool components are sensitive both to pathologies linked with alterations of tissue metabolism and to prolonged physiological changes. In vivo formation of fragments of functional proteins includes several consecutive proteolytic stages inside the cells and further release of bioactive compounds into the surrounding medium. The effects of pool components take place predominantly at tissue and cellular levels, their effects being related to stimulation or inhibition of cell growth, induction of cell differentiation, and death. The above-mentioned features lead to the proposal that the main in vivo function of components of tissue-specific peptides is maintenance of tissue homeostasis, i.e., the normal ratio of functional, dividing, differentiating, and dying cells of tissues. Components of tissue-specific peptide pools display several features distinguishing them from "classical" peptide hormones and neuromediators. Summarizing, a novel peptidergic regulatory system is considered.

1998 ◽  
Vol 70 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Vadim T. Ivanov ◽  
Andrei A. Karelin ◽  
Elena Yu. Blischenko ◽  
Marina M. Philippova ◽  
Igor V. Nazimov

2015 ◽  
Vol 83 (12) ◽  
pp. 4639-4652 ◽  
Author(s):  
Timothy J. Brickman ◽  
Ryan J. Suhadolc ◽  
Sandra K. Armstrong

Bordetella bronchisepticacan use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and althoughBordetella pertussishas thebfrDandbfrEgenes, the role of these genes in iron uptake has not been demonstrated. In this study, thebfrDandbfrEgenes ofB. pertussiswere shown to be functional inB. bronchiseptica, but neitherB. bronchiseptica bfrDnorbfrEimparted catecholamine utilization toB. pertussis. Gene fusion analyses found that expression ofB. bronchiseptica bfrAwas increased during iron starvation, as is common for iron receptor genes, but that expression of thebfrDandbfrEgenes of both species was decreased during iron limitation. As shown previously forB. pertussis,bfrDexpression inB. bronchisepticawas also dependent on the BvgAS virulence regulatory system; however, in contrast to the case inB. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression ofbfrDinB. bronchiseptica. Further studies using aB. bronchisepticabvgASmutant expressing theB. pertussisbvgASgenes revealed that the interspecies differences inbfrDmodulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to thein vivofitness ofB. bronchisepticaandB. pertussis. Additional evidence of thein vivoimportance of theB. pertussisreceptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with theB. pertussisBfrD and BfrE proteins.


2009 ◽  
Vol 78 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Xin Xu ◽  
Michael Hensel

ABSTRACT Intracellular Salmonella enterica serovar Typhimurium deploys the Salmonella pathogenicity island 2 (SPI2)-encoded type III secretion system (T3SS) to modify host cell functions and accomplish intracellular replication. This virulence function is controlled by the two-component system SsrAB that regulates the expression of several operons in SPI2 and, in addition, a large number of genes for non-SPI2-encoded effector proteins. Here, we analyzed the relative expression levels of members of the SsrAB virulon. We used a novel reporter fusion strategy for single-copy chromosomal fusions, all done in an identical manner in order to enable direct quantitative comparison. We observed very high expression levels for sseJ and sifA; high expression levels for ssaG, steC, sseL, and sopD2; moderate expression levels for ssaB, sseA, sseG, sifB, pipB2, and sspH1; and low expression levels for sspH2, sseI, slrP, sseK1, sseK2, pipB, and gogB. The expression of the SsrAB virulon was highly dependent on the function of SsrB but also required EnvR/OmpZ. Deletion of PhoP, part of the global regulatory system PhoPQ, resulted in highly delayed expression of the SsrAB virulon under in vitro conditions; however, maximal expression was similar to that in a wild-type background. The expression levels of SsrAB-dependent genes in intracellular bacteria were in good agreement with in vitro analyses. We provide here a comprehensive and fully comparable analysis of the expression of genes in the SsrAB virulon. This information will be of interest for the selection of in vivo-activated promoters, for example, for rational design of recombinant vaccines.


2014 ◽  
Vol 112 (22) ◽  
pp. 6841-6847 ◽  
Author(s):  
Robert N. Plasschaert ◽  
Marisa S. Bartolomei

Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10’s unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.


2016 ◽  
Author(s):  
Amir Feizi ◽  
Francesco Gatto ◽  
Mathias Uhlen ◽  
Jens Nielsen

AbstractProteins that are components of the secretory machinery form a cellular pathway of paramount importance for physiological regulation, development and function of human tissues. Consistently, most secretory pathway components are ubiquitously expressed in all tissues. At the same time, recent studies identified that the largest fraction of tissue-specific proteins consists of secreted and membrane proteins and not intracellular proteins. This suggests that the secretory pathway is distinctively regulated in a tissue-specific fashion. However, a systematic analysis on how the protein secretory pathway is tuned in different tissues is lacking, and it is even largely unexplored if the secretome and membrane proteome differs in, for example, posttranslation modifications across tissues. Here, analyzing publically available transcriptome data across 30 human tissues, we discovered the expression level of key components previously categorized as housekeeping proteins were specifically over-expressed in a certain tissue compared with the average expression of their corresponding secretory pathway subsystem (e.g. protein folding). These extreme genes define an exceptional fine-tuning in specific subnetworks, which neatly differentiated for example the pancreas and liver from 30 other tissues. Moreover, the subnetwork expression tuning correlated with the nature and number of post translational modification sites in the pancreas or liver-specific secretome and membrane proteome. These patterns were recurrently observed also in other tissues, like the blood, the brain and the skeletal muscle. These findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined subnetworks in order to support the diversity of secreted proteins and their modifications.


The creation of a pancreas tissue-engineered construct based on isolated pancreatic islets is hindered by problems associated with maintaining their viability and insulin-producing function. Both biopolymer and tissue-specific scaffolds can contribute to the maintenance of the structure and function of pancreatic islets in vitro and in vivo. A comparative morphofunctional analysis in vitro of isolated pancreatic islets cultured with a biopolymer collagen-containing scaffold and a tissue-specific scaffold obtained as a result of pancreatic decellularization was performed. The results showed that the use of the scaffolds contributes not only to the maintenance of the cultured islets viability, but also to the prolongation of their insulin-producing functions, compared to the islets monoculture in vitro. A significant increase was found in basal and stimulated (under glucose loading) insulin secreted by the islets cultured with the scaffolds. At the same time, the advantage of using a tissue-specific scaffold in comparison with a biopolymer collagen-containing scaffold was shown. We think that these studies will become a platform for creating a human pancreas tissue-engineered design for the treatment of type 1 diabetes.


2017 ◽  
Vol 19 (8) ◽  
pp. 952-961 ◽  
Author(s):  
Lars L. P. Hanssen ◽  
Mira T. Kassouf ◽  
A. Marieke Oudelaar ◽  
Daniel Biggs ◽  
Chris Preece ◽  
...  

Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Sign in / Sign up

Export Citation Format

Share Document