Assessment of tissue‐specific changes in structure and function induced by in vivo skin/skull optical clearing techniques

Author(s):  
Chao Zhang ◽  
Wei Feng

The creation of a pancreas tissue-engineered construct based on isolated pancreatic islets is hindered by problems associated with maintaining their viability and insulin-producing function. Both biopolymer and tissue-specific scaffolds can contribute to the maintenance of the structure and function of pancreatic islets in vitro and in vivo. A comparative morphofunctional analysis in vitro of isolated pancreatic islets cultured with a biopolymer collagen-containing scaffold and a tissue-specific scaffold obtained as a result of pancreatic decellularization was performed. The results showed that the use of the scaffolds contributes not only to the maintenance of the cultured islets viability, but also to the prolongation of their insulin-producing functions, compared to the islets monoculture in vitro. A significant increase was found in basal and stimulated (under glucose loading) insulin secreted by the islets cultured with the scaffolds. At the same time, the advantage of using a tissue-specific scaffold in comparison with a biopolymer collagen-containing scaffold was shown. We think that these studies will become a platform for creating a human pancreas tissue-engineered design for the treatment of type 1 diabetes.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi Powers ◽  
Raymond Chang ◽  
Justin Torello ◽  
Rhonda Silva ◽  
Yannick Cadoret ◽  
...  

AbstractEchocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.


1991 ◽  
Vol 266 (20) ◽  
pp. 13130-13134
Author(s):  
H.J. Wu ◽  
D.J. Rozansky ◽  
R.J. Parmer ◽  
B.M. Gill ◽  
D.T. O'Connor

2008 ◽  
Vol 74 (24) ◽  
pp. 7821-7823 ◽  
Author(s):  
Kai Linke ◽  
Nagarajan Periasamy ◽  
Matthias Ehrmann ◽  
Roland Winter ◽  
Rudi F. Vogel

ABSTRACT High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.


2000 ◽  
Vol 72 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Vadim T. Ivanov ◽  
Oleg N. Yatskin ◽  
Olga A. Kalinina ◽  
Marina M. Philippova ◽  
Andrei A. Karelin ◽  
...  

Systematic analysis of several tissue extracts for peptide components followed by bioactivity studies leads to formulation of the concept of "tissue-specific peptide pools". According to that concept the endogenous proteolysis of proteins with well-established functions, such as hemoglobin, actin, and cellular enzymes in tissues leads to formation of the sets (or pools) of bioactive peptides. The sets are tissue-specific on one hand and conservative in a given tissue at normal conditions on the other. The content and the composition of pool components are sensitive both to pathologies linked with alterations of tissue metabolism and to prolonged physiological changes. In vivo formation of fragments of functional proteins includes several consecutive proteolytic stages inside the cells and further release of bioactive compounds into the surrounding medium. The effects of pool components take place predominantly at tissue and cellular levels, their effects being related to stimulation or inhibition of cell growth, induction of cell differentiation, and death. The above-mentioned features lead to the proposal that the main in vivo function of components of tissue-specific peptides is maintenance of tissue homeostasis, i.e., the normal ratio of functional, dividing, differentiating, and dying cells of tissues. Components of tissue-specific peptide pools display several features distinguishing them from "classical" peptide hormones and neuromediators. Summarizing, a novel peptidergic regulatory system is considered.


Sign in / Sign up

Export Citation Format

Share Document