scholarly journals Search for the evidence of endocrine disruption in the aquatic environment; Lessons to be learned from joint biological and chemical monitoring in the European project COMPREHEND

2003 ◽  
Vol 75 (11-12) ◽  
pp. 2445-2450 ◽  
Author(s):  
R. I. L. Eggen ◽  
B.-E. Bengtsson ◽  
C. T. Bowmer ◽  
A. A. M. Gerritsen ◽  
Michel Gibert ◽  
...  

Between January 1999 and December 2001, the European Community project COMPREHEND was performed. The overall aim of COMPREHEND was to assess endocrine disruption in the aquatic environment in Europe, consequent to effluent discharge, with emphasis on estrogenic activity. COMPREHEND demonstrated the widespread occurrence of estrogenic effluents across Europe and presented evidence of impacts on a range of wild fish species. Using a variety of bioassays in combination with chemical analytical methods, estrogenic steroids of human origin from domestic wastewater effluents were identified as the most pervasive problem, although alkylphenols may be important estrogenic components of some industrial effluents. New tools have been developed for the identification of estrogenic effluents, and recommendations are made for the improvement of existing techniques. We have shown that individual fish within natural populations may be feminized to varying degrees, but it has not been possible to show, using traditional fish population parameters, that the survival of fish populations is threatened. However, laboratory-based fish life-cycle studies demonstrate the sensitivity of fish to estrogen (and androgen) exposure and how this might lead to complex (and potentially damaging) genetic changes at the population level. New approaches to this problem, utilizing recent advances made in the field of molecular and population genetics, are recommended. Finally, a study of estrogenic and androgenic activity of waste waters during the treatment process has shown that some of the existing wastewater treatment technologies have the potential to eliminate or minimize the hormonal activity of the final effluent.

2003 ◽  
Vol 75 (11-12) ◽  
pp. 2219-2234 ◽  
Author(s):  
S. Jobling ◽  
C. R. Tyler

Endocrine disruption has been reported in freshwater fish populations around the world. This phenomenon ranges from subtle changes in the physiology and sexual behavior of fish to permanently altered sexual differentiation and impairment of fertility. Despite widespread reports of endocrine disruption in fish (and this is well characterized at the individual level), few studies have demonstrated population-level consequences as a result of exposure to endocrine-disrupting chemicals (EDCs). An exception to this is in Lake Ontario Lake trout where precipitous declines in the population have been linked with periods of high exposure to organochlorine chemicals (known EDCs). Recently, it has been established that roach (Rutilus rutilus) exposed to treated sewage effluent (that contains complex mixtures of EDCs) in UK rivers, have a reduced reproductive capacity. This, in turn, may have population-level consequences. Evidence for a link between exposure to effluents from kraft mill (BKME) and sewage treatment works (STWs) and altered reproductive function in freshwater fish is compelling. In most cases, however, a causal link between a specific chemical and a physiological effect has not been established. Indeed, identifying specific chemical(s) responsible for adverse effects observed in the wild is difficult, given that tens of thousands of man-made chemicals enter the aquatic environment and that mixtures of chemicals can have combination (e.g., additive) effects. Some EDCs are known to act at a number of different body targets to affect a variety of physiological processes, further complicating the identification of the causative agent(s). Endocrine disruption appears to be particularly widespread in freshwater fish populations. There is little evidence, however, to suggest fish are more susceptible to EDCs relative to other wildlife. Notwithstanding this, there are some features of the endocrine physiology of fish that may be particularly susceptible to the effects of EDCs, including the processes of sex-determination and smoltification (in salmonids). Furthermore, their aquatic existence means that fish can be bathed constantly in a solution containing pollutants. In addition, uptake of chemicals readily occurs via the gills and skin, as well as via the diet (the major exposure route for most EDCs in terrestrial animals). The exposure of fish early life stages to the cocktail of EDCs present in some aquatic environments may be of particular concern, given that this is an especially vulnerable period in their development. The challenge, from the point of view of ecological risk assessment, is to determine effects of EDCs on freshwater fish populations and freshwater ecosystems. In order to meet this challenge, high-quality data are required on the population biology of freshwater fish, on the effects of EDCs on their various life history characteristics, and comprehensive and appropriate population models. Basic information on the population biology of most species of wild freshwater fish is, however, extremely limited, and needs significant improvement for use in deriving a sound understanding of how EDCs affect fish population sustainability. Notwithstanding this, we need to start to undertake possible/probable predictions of population level effects of EDCs using data derived from the effects found in individual fish. Furthermore, information on the geographical extent of endocrine disruption in freshwater fish is vital for understanding the impact of EDCs in fish populations. This can be derived using published statistical associations between endocrine disruption in individual fish and pollutant concentration in receiving waters. Simplistic population models, based on the effects of EDCs on the reproductive success of individual fish can also used to model the likely population responses to EDCs. Wherever there is sufficient evidence for endocrine disruption in freshwater fish and the need for remediation has been established, then there is a need to focus on how these problems can be alleviated. Where industrial chemicals are identified as causative agents, a practical program of tighter regulation for their discharge and/or a switch to alternative chemicals (which do not act as EDCs) is needed. There are recent examples where such strategies have been adopted, and these have been successful in reducing the impacts of EDCs from point source discharges on freshwater fish. Where EDCs are of natural origin (e.g., sex steroid hormones from human and animal waste), however, remediation is a more difficult task. Regulation of the release of these chemicals can probably be achieved only by improvements in treatment processes and/or the implementation of systems that specifically remove and degrade them before their discharge into the aquatic environment.


2021 ◽  
Author(s):  
Pauliina Anna Ahti ◽  
Silva Uusi-Heikkilä ◽  
Timo J Marjomäki ◽  
Anna Kuparinen

Abstract The presence of senescence in natural populations remains an unsolved problem in biology. Described as an age-dependent increase in natural mortality (known as actuarial senescence) and an age-dependent decrease in fecundity (known as reproductive senescence), the role of senescence in nature is still poorly understood. Based on empirical estimates of reproductive and actuarial senescence, we explored how senescence affects the population dynamics of Coregonus albula, a small, schooling salmonid fish. Using an empirically-based eco-evolutionary model, we investigated how the presence or absence of senescence affects how the fish population responds to pristine, intensive harvest, and recovery phases. Our results showed that at an individual level, the presence of senescence was accompanied by life-history trade-offs, i.e. lower asymptotic length and smaller size and younger age at maturity, both in the presence and absence of fishing. At the population level, the response to different fisheries selection patterns depended on the presence or absence of senescence. Importantly, the results indicate that through the lifehistory trade-offs between early reproduction and late life survival, the young and small individuals can have an important role in population recovery, especially when senescence is present. Since most life-history and fisheries models ignore senescence, they may be over-estimating reproductive capacity and under-estimating natural mortality. Our results highlight the need for increasing biological realism in these models to ensure the successful management of our natural resources.


1991 ◽  
Vol 48 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Gary K. Meffe

Much light can be shed on life history evolution through study of responses of organisms to chronic exposure to a novel or perturbed environment. To determine the influence of 28 yr of temporally unpredictable thermal elevation on their life history patterns, I sampled eastern mosquitofish (Gambusia holbrooki) from a thermally elevated (outflow from a nuclear reactor) and an ambient (farm pond) habitat in South Carolina every month for 2 yr. Fish from the artificially heated environment reproduced all year, had higher reproductive investments (higher clutch sizes and reproductive biomass), and smaller offspring than did fish from the ambient environment, which ceased reproduction from October through March, typical for natural populations of the region. Likely environmental factors responsible for these differences include unpredictable food resources, higher mortality from thermal death, and higher predation by fishes and birds in the heated waters. The extent to which these life history alterations are the result of adaptive genetic changes versus phenotypically plastic responses remains to be tested.


2018 ◽  
Author(s):  
Maria Paniw

AbstractWith a growing number of long-term, individual-based data on natural populations available, it has become increasingly evident that environmental change affects populations through complex, simultaneously occurring demographic and evolutionary processes. Analyses of population-level responses to environmental change must therefore integrate demography and evolution into one coherent framework. Integral projection models (IPMs), which can relate genetic and phenotypic traits to demographic and population-level processes, offer a powerful approach for such integration. However, a rather artificial divide exists in how plant and animal population ecologists use IPMs. Here, I argue for the integration of the two sub-disciplines, particularly focusing on how plant ecologists can diversify their toolset to investigate selection pressures and eco-evolutionary dynamics in plant population models. I provide an overview of approaches that have applied IPMs for eco-evolutionary studies and discuss a potential future research agenda for plant population ecologists. Given an impending extinction crisis, a holistic look at the interacting processes mediating population persistence under environmental change is urgently needed.


2019 ◽  
Vol 22 (8) ◽  
pp. 1090-1096
Author(s):  
E. K. Karpova ◽  
I. Yu. Rauschenbach ◽  
N. E. Gruntenko

One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (R­individuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NR­individuals). The study of reproductive characteristics of R­ and NR­individuals showed that under normal conditions R­individuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NR­individuals die, but if its intensity is low, then they, unlike R­individuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R­ and NR­alleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.


Parasitology ◽  
2009 ◽  
Vol 136 (14) ◽  
pp. 1935-1942 ◽  
Author(s):  
F. TRIPET

SUMMARYThere has been a recent shift in the literature on mosquito/Plasmodium interactions with an increasingly large number of theoretical and experimental studies focusing on their population biology and evolutionary processes. Ecological immunology of mosquito-malaria interactions – the study of the mechanisms and function of mosquito immune responses to Plasmodium in their ecological and evolutionary context – is particularly important for our understanding of malaria transmission and how to control it. Indeed, describing the processes that create and maintain variation in mosquito immune responses and parasite virulence in natural populations may be as important to this endeavor as describing the immune responses themselves. For historical reasons, Ecological Immunology still largely relies on studies based on non-natural model systems. There are many reasons why current research should favour studies conducted closer to the field and more realistic experimental systems whenever possible. As a result, a number of researchers have raised concerns over the use of artificial host-parasite associations to generate inferences about population-level processes. Here I discuss and review several lines of evidence that, I believe, best illustrate and summarize the limitations of inferences generated using non-natural model systems.


2009 ◽  
Vol 35 (5) ◽  
pp. 826-829 ◽  
Author(s):  
Marina Isidori ◽  
Maria Bellotta ◽  
Margherita Cangiano ◽  
Alfredo Parrella

2020 ◽  
pp. 149-168
Author(s):  
Michael J. Fogarty ◽  
Jeremy S. Collie

The dominant focus on production processes in fisheries science sets it apart from other areas of population ecology in which population numbers are the principal currency for analysis. This chapter extends consideration of individual growth and mortality rates provided in earlier chapters to broaden the context for understanding cohort and population processes. A cohort is a group of organisms born within a given time period (e.g. year). How a fish population will respond to harvesting requires not only accurate accounting of its effective reproductive output but an understanding of the relative importance of compensatory mechanisms operating at different points in the life cycle. Recruitment (the number in a cohort surviving to a specified life stage or age) emerges as a dominant component of production at the population level. A dominant theme in this chapter concerns population regulation as embodied in the recruitment process and the high variability in this process.


Sign in / Sign up

Export Citation Format

Share Document