scholarly journals Multitarget drugs: Focus on the NO-donor hybrid drugs

2008 ◽  
Vol 80 (8) ◽  
pp. 1693-1701 ◽  
Author(s):  
Alberto Gasco ◽  
Donatella Boschi ◽  
Konstantin Chegaev ◽  
Clara Cena ◽  
Antonella Di Stilo ◽  
...  

The article addresses the design of multitarget drugs, namely, compounds capable of interacting with more than one target simultaneously. These agents could be useful tools in the therapy of complex diseases such as cardiovascular and inflammatory diseases. An interesting case of multitarget compounds are nitric oxide (NO)-donor hybrids, structures which combine the physiological properties of NO with those of a lead drug. In particular, the authors discuss the symbiotic approach used to design NO-donor nonsteroidal anti-inflammatory drugs (NO-NSAIDs) and NO-donor antioxidants. The former could be useful agents in the treatment of anti-inflammatory diseases being devoid of gastro- and cardiotoxicity, the latter could be a valid approach to the treatment of many cardiovascular diseases.

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2482 ◽  
Author(s):  
Yun-Da Yao ◽  
Xiu-Yu Shen ◽  
Jorge Machado ◽  
Jin-Fang Luo ◽  
Yi Dai ◽  
...  

Nardochinoid B (NAB) is a new compound isolated from Nardostachys chinensis. Although our previous study reported that the NAB suppressed the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated RAW264.7 cells, the specific mechanisms of anti-inflammatory action of NAB remains unknown. Thus, we examined the effects of NAB against LPS-induced inflammation. In this study, we found that NAB suppressed the LPS-induced inflammatory responses by restraining the expression of inducible nitric oxide synthase (iNOS) proteins and mRNA instead of cyclooxygenase-2 (COX-2) protein and mRNA in RAW264.7 cells, implying that NAB may have lower side effects compared with nonsteroidal anti-inflammatory drugs (NSAIDs). Besides, NAB upregulated the protein and mRNA expressions of heme oxygenase (HO)-1 when it exerted its anti-inflammatory effects. Also, NAB restrained the production of NO by increasing HO-1 expression in LPS-stimulated RAW264.7 cells. Thus, it is considered that the anti-inflammatory effect of NAB is associated with an induction of antioxidant protein HO-1, and thus NAB may be a potential HO-1 inducer for treating inflammatory diseases. Moreover, our study found that the inhibitory effect of NAB on NO is similar to that of the positive drug dexamethasone, suggesting that NAB has great potential for developing new drugs in treating inflammatory diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Most A. Akhtar ◽  
Ritesh Raju ◽  
Karren D. Beattie ◽  
Frances Bodkin ◽  
Gerald Münch

Chronic inflammation contributes to multiple ageing-related musculoskeletal and neurodegenerative diseases, cardiovascular diseases, asthma, rheumatoid arthritis, and inflammatory bowel disease. More recently, chronic neuroinflammation has been attributed to Parkinson’s and Alzheimer’s disease and autism-spectrum and obsessive-compulsive disorders. To date, pharmacotherapy of inflammatory conditions is based mainly on nonsteroidal anti-inflammatory drugs which in contrast to cytokine-suppressive anti-inflammatory drugs do not influence the production of cytokines such as tumour necrosis factor-α or nitric oxide. However, their prolonged use can cause gastrointestinal toxicity and promote adverse events such as high blood pressure, congestive heart failure, and thrombosis. Hence, there is a critical need to develop novel and safer nonsteroidal anti-inflammatory drugs possessing alternate mechanism of action. In this study, plants used by the Dharawal Aboriginal people in Australia for the treatment of inflammatory conditions, for example, asthma, arthritis, rheumatism, fever, oedema, eye inflammation, and inflammation of bladder and related inflammatory diseases, were evaluated for their anti-inflammatory activity in vitro. Ethanolic extracts from 17 Eucalyptus spp. (Myrtaceae) were assessed for their capacity to inhibit nitric oxide and tumor necrosis factor-α production in RAW 264.7 macrophages. Eucalyptus benthamii showed the most potent nitric oxide inhibitory effect (IC50  5.57±1.4 µg/mL), whilst E. bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra, and E. viminalis exhibited nitric oxide inhibition values between 7.58 and 19.77 µg/mL.


1996 ◽  
Vol 16 (01) ◽  
pp. 56-59
Author(s):  
D. J. Tyrrell ◽  
C. P. Page

SummaryEvidence continues to accumulate that the pleiotropic nature of heparin (beyond its anticoagulant potency) includes anti-inflammatory activities at a number of levels. It is clear that drugs exploiting these anti-inflammatory activities of heparin may offer exciting new therapeutic applications to the treatment of a wide range of inflammatory diseases.


2021 ◽  
Vol 14 (7) ◽  
pp. 692
Author(s):  
Ryldene Marques Duarte da Cruz ◽  
Francisco Jaime Bezerra Mendonça-Junior ◽  
Natália Barbosa de Mélo ◽  
Luciana Scotti ◽  
Rodrigo Santos Aquino de Araújo ◽  
...  

Rheumatoid arthritis, arthrosis and gout, among other chronic inflammatory diseases are public health problems and represent major therapeutic challenges. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed clinical treatments, despite their severe side effects and their exclusive action in improving symptoms, without effectively promoting the cure. However, recent advances in the fields of pharmacology, medicinal chemistry, and chemoinformatics have provided valuable information and opportunities for development of new anti-inflammatory drug candidates. For drug design and discovery, thiophene derivatives are privileged structures. Thiophene-based compounds, like the commercial drugs Tinoridine and Tiaprofenic acid, are known for their anti-inflammatory properties. The present review provides an update on the role of thiophene-based derivatives in inflammation. Studies on mechanisms of action, interactions with receptors (especially against cyclooxygenase (COX) and lipoxygenase (LOX)), and structure-activity relationships are also presented and discussed. The results demonstrate the importance of thiophene-based compounds as privileged structures for the design and discovery of novel anti-inflammatory agents. The studies reveal important structural characteristics. The presence of carboxylic acids, esters, amines, and amides, as well as methyl and methoxy groups, has been frequently described, and highlights the importance of these groups for anti-inflammatory activity and biological target recognition, especially for inhibition of COX and LOX enzymes.


2001 ◽  
Vol 76 (6) ◽  
pp. 1895-1904 ◽  
Author(s):  
Masato Asanuma ◽  
Sakiko Nishibayashi-Asanuma ◽  
Ikuko Miyazaki ◽  
Masahiro Kohno ◽  
Norio Ogawa

2012 ◽  
Vol 22 (7) ◽  
pp. 3510-3517 ◽  
Author(s):  
Shailesh L. Chandak ◽  
Amol S. Bansode ◽  
Prashant R. Murumkar ◽  
Monika G. Shinde ◽  
Kailash G. Bothara

2021 ◽  
Vol 28 ◽  
Author(s):  
Josiane Viana Cruz ◽  
Joaquín María Campos Rosa ◽  
Njogu Mark Kimani ◽  
Silvana Giuliatti ◽  
Cleydson Breno Rodrigues dos Santos

: This article presents a simplified view of celecoxib as a potential inhibitor in the treatment of inflammatory diseases. The enzyme cyclooxygenase (COX) has, predominantly, two isoforms called cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). The former plays a constitutive role that is related to homeostatic effects in renal and platelets, while the latter is mainly responsible for induction of inflammatory effects. Since COX-2 plays an important role in the pathogenesis of inflammatory diseases, it has been signaled as a target for the planning of anti-inflammatory intermediates. Many inhibitors developed and planned for COX-2 inhibition have presented side effects to humans, mainly in the gastrointestinal and/or cardiovascular tract. Therefore, it is necessary to design new potential COX-2 inhibitors, which are relatively safe and without side effects. To this end, of the generation of non-steroidal anti-inflammatory drugs from “coxibs”, celecoxib is the only potent selective COX-2 inhibitor that is still commercially available. Thus, the compound celecoxib became a commercial prototype inhibitor for the development of anti-inflammatory agents for COX-2 enzyme. In this review, we provide highlights where such inhibition should provide a structural basis for the design of promising new non-steroidal anti-inflammatory drugs (NSAIDs) which act as COX-2 inhibitors with lesser side effects on the human body.


2016 ◽  
Vol 29 (4) ◽  
pp. 562-571 ◽  
Author(s):  
Chethan Gejjalagere Honnappa ◽  
Unnikrishnan Mazhuvancherry Kesavan

Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology.


Sign in / Sign up

Export Citation Format

Share Document