scholarly journals Perfect Phylogenetic Networks: A New Methodology for Reconstructing the Evolutionary History of Natural Languages

Language ◽  
2005 ◽  
Vol 81 (2) ◽  
pp. 382-420 ◽  
Author(s):  
Luay Nakhleh ◽  
Donald A. Ringe ◽  
Tandy Warnow
2006 ◽  
Vol 6 (5) ◽  
pp. 539-558 ◽  
Author(s):  
ESRA ERDEM ◽  
VLADIMIR LIFSCHITZ ◽  
DON RINGE

The concept of a temporal phylogenetic network is a mathematical model of evolution of a family of natural languages. It takes into account the fact that languages can trade their characteristics with each other when linguistic communities are in contact, and also that a contact is only possible when the languages are spoken at the same time. We show how computational methods of answer set programming and constraint logic programming can be used to generate plausible conjectures about contacts between prehistoric linguistic communities, and illustrate our approach by applying it to the evolutionary history of Indo-European languages.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rosanne Wallin ◽  
Leo van Iersel ◽  
Steven Kelk ◽  
Leen Stougie

Abstract Background Rooted phylogenetic networks are used to display complex evolutionary history involving so-called reticulation events, such as genetic recombination. Various methods have been developed to construct such networks, using for example a multiple sequence alignment or multiple phylogenetic trees as input data. Coronaviruses are known to recombine frequently, but rooted phylogenetic networks have not yet been used extensively to describe their evolutionary history. Here, we created a workflow to compare the evolutionary history of SARS-CoV-2 with other SARS-like viruses using several rooted phylogenetic network inference algorithms. This workflow includes filtering noise from sets of phylogenetic trees by contracting edges based on branch length and bootstrap support, followed by resolution of multifurcations. We explored the running times of the network inference algorithms, the impact of filtering on the properties of the produced networks, and attempted to derive biological insights regarding the evolution of SARS-CoV-2 from them. Results The network inference algorithms are capable of constructing rooted phylogenetic networks for coronavirus data, although running-time limitations require restricting such datasets to a relatively small number of taxa. Filtering generally reduces the number of reticulations in the produced networks and increases their temporal consistency. Taxon bat-SL-CoVZC45 emerges as a major and structural source of discordance in the dataset. The tested algorithms often indicate that SARS-CoV-2/RaTG13 is a tree-like clade, with possibly some reticulate activity further back in their history. A smaller number of constructed networks posit SARS-CoV-2 as a possible recombinant, although this might be a methodological artefact arising from the interaction of bat-SL-CoVZC45 discordance and the optimization criteria used. Conclusion Our results demonstrate that as part of a wider workflow and with careful attention paid to running time, rooted phylogenetic network algorithms are capable of producing plausible networks from coronavirus data. These networks partly corroborate existing theories about SARS-CoV-2, and partly produce new avenues for exploration regarding the location and significance of reticulate activity within the wider group of SARS-like viruses. Our workflow may serve as a model for pipelines in which phylogenetic network algorithms can be used to analyse different datasets and test different hypotheses.


Author(s):  
Remie Janssen ◽  
Pengyu Liu

Phylogenetic networks represent evolutionary history of species and can record natural reticulate evolutionary processes such as horizontal gene transfer and gene recombination. This makes phylogenetic networks a more comprehensive representation of evolutionary history compared to phylogenetic trees. Stochastic processes for generating random trees or networks are important tools in evolutionary analysis, especially in phylogeny reconstruction where they can be utilized for validation or serve as priors for Bayesian methods. However, as more network generators are developed, there is a lack of discussion or comparison for different generators. To bridge this gap, we compare a set of phylogenetic network generators by profiling topological summary statistics of the generated networks over the number of reticulations and comparing the topological profiles.


2020 ◽  
Vol 70 (1) ◽  
pp. 162-180
Author(s):  
Jeffrey P Rose ◽  
Cassio A P Toledo ◽  
Emily Moriarty Lemmon ◽  
Alan R Lemmon ◽  
Kenneth J Sytsma

Abstract Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.]


2018 ◽  
Vol 68 (2) ◽  
pp. 329-346 ◽  
Author(s):  
Daniel J MacGuigan ◽  
Thomas J Near

Abstract Evolutionary history is typically portrayed as a branching phylogenetic tree, yet not all evolution proceeds in a purely bifurcating manner. Introgressive hybridization is one process that results in reticulate evolution. Most known examples of genome-wide introgression occur among closely related species with relatively recent common ancestry; however, we present evidence for ancient hybridization and genome-wide introgression between major stem lineages of darters, a species-rich clade of North American freshwater fishes. Previous attempts to resolve the relationships of darters have been confounded by the uncertain phylogenetic resolution of the lineage Allohistium. In this study, we investigate the phylogenomics of darters, specifically the relationships of Allohistium, through analyses of approximately 30,000 RADseq loci sampled from 112 species. Our phylogenetic inferences are based on traditional approaches in combination with strategies that accommodate reticulate evolution. These analyses result in a novel phylogenetic hypothesis for darters that includes ancient introgression between Allohistium and other two major darter lineages, minimally occurring 20 million years ago. Darters offer a compelling case for the necessity of incorporating phylogenetic networks in reconstructing the evolutionary history of diversification in species-rich lineages. We anticipate that the growing wealth of genomic data for clades of non-model organisms will reveal more examples of ancient hybridization, eventually requiring a re-evaluation of how evolutionary history is visualized and utilized in macroevolutonary investigations.


2008 ◽  
Vol 16 (4) ◽  
pp. 429-444 ◽  
Author(s):  
Jacques Mehler ◽  
Marina Nespor ◽  
Marcela Peña

The study of language acquisition during the first year of life is reviewed. We identified three areas that have contributed to our understanding of how the infant copes with linguistic signals to attain the most basic properties of its native language. Distributional properties present in the incoming utterances may allow infants to extract word candidates in the speech stream as shown in the impoverished conditions of artificial grammar studies. This procedure is important because it would work well for most natural languages. We also highlight another important mechanism that allows infants to induce structure from very scarce data. In fact, humans tend to project structural conjectures after being presented with only a few utterances. Finally, we illustrate constraints on processing that derive from perceptual and memory functions that arose much earlier during the evolutionary history of the species. We conclude that all of these machanisms are important for the infants to gain access to its native language.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document