scholarly journals Comparing the topology of phylogenetic network generators

Author(s):  
Remie Janssen ◽  
Pengyu Liu

Phylogenetic networks represent evolutionary history of species and can record natural reticulate evolutionary processes such as horizontal gene transfer and gene recombination. This makes phylogenetic networks a more comprehensive representation of evolutionary history compared to phylogenetic trees. Stochastic processes for generating random trees or networks are important tools in evolutionary analysis, especially in phylogeny reconstruction where they can be utilized for validation or serve as priors for Bayesian methods. However, as more network generators are developed, there is a lack of discussion or comparison for different generators. To bridge this gap, we compare a set of phylogenetic network generators by profiling topological summary statistics of the generated networks over the number of reticulations and comparing the topological profiles.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rosanne Wallin ◽  
Leo van Iersel ◽  
Steven Kelk ◽  
Leen Stougie

Abstract Background Rooted phylogenetic networks are used to display complex evolutionary history involving so-called reticulation events, such as genetic recombination. Various methods have been developed to construct such networks, using for example a multiple sequence alignment or multiple phylogenetic trees as input data. Coronaviruses are known to recombine frequently, but rooted phylogenetic networks have not yet been used extensively to describe their evolutionary history. Here, we created a workflow to compare the evolutionary history of SARS-CoV-2 with other SARS-like viruses using several rooted phylogenetic network inference algorithms. This workflow includes filtering noise from sets of phylogenetic trees by contracting edges based on branch length and bootstrap support, followed by resolution of multifurcations. We explored the running times of the network inference algorithms, the impact of filtering on the properties of the produced networks, and attempted to derive biological insights regarding the evolution of SARS-CoV-2 from them. Results The network inference algorithms are capable of constructing rooted phylogenetic networks for coronavirus data, although running-time limitations require restricting such datasets to a relatively small number of taxa. Filtering generally reduces the number of reticulations in the produced networks and increases their temporal consistency. Taxon bat-SL-CoVZC45 emerges as a major and structural source of discordance in the dataset. The tested algorithms often indicate that SARS-CoV-2/RaTG13 is a tree-like clade, with possibly some reticulate activity further back in their history. A smaller number of constructed networks posit SARS-CoV-2 as a possible recombinant, although this might be a methodological artefact arising from the interaction of bat-SL-CoVZC45 discordance and the optimization criteria used. Conclusion Our results demonstrate that as part of a wider workflow and with careful attention paid to running time, rooted phylogenetic network algorithms are capable of producing plausible networks from coronavirus data. These networks partly corroborate existing theories about SARS-CoV-2, and partly produce new avenues for exploration regarding the location and significance of reticulate activity within the wider group of SARS-like viruses. Our workflow may serve as a model for pipelines in which phylogenetic network algorithms can be used to analyse different datasets and test different hypotheses.


2006 ◽  
Vol 04 (01) ◽  
pp. 59-74 ◽  
Author(s):  
YING-JUN HE ◽  
TRINH N. D. HUYNH ◽  
JESPER JANSSON ◽  
WING-KIN SUNG

To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set [Formula: see text] and none of the rooted triplets in another given set [Formula: see text]. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.


Gut ◽  
2018 ◽  
Vol 68 (6) ◽  
pp. 985-995 ◽  
Author(s):  
Ann-Marie Baker ◽  
William Cross ◽  
Kit Curtius ◽  
Ibrahim Al Bakir ◽  
Chang-Ho Ryan Choi ◽  
...  

ObjectiveIBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing.DesignExome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC.Results10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated ‘catastrophic’ CNA increase.ConclusionsEvolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection.


2019 ◽  
Vol 69 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Christopher Blair ◽  
Cécile Ané

Abstract Genomic data have had a profound impact on nearly every biological discipline. In systematics and phylogenetics, the thousands of loci that are now being sequenced can be analyzed under the multispecies coalescent model (MSC) to explicitly account for gene tree discordance due to incomplete lineage sorting (ILS). However, the MSC assumes no gene flow post divergence, calling for additional methods that can accommodate this limitation. Explicit phylogenetic network methods have emerged, which can simultaneously account for ILS and gene flow by representing evolutionary history as a directed acyclic graph. In this point of view, we highlight some of the strengths and limitations of phylogenetic networks and argue that tree-based inference should not be blindly abandoned in favor of networks simply because they represent more parameter rich models. Attention should be given to model selection of reticulation complexity, and the most robust conclusions regarding evolutionary history are likely obtained when combining tree- and network-based inference.


2006 ◽  
Vol 6 (5) ◽  
pp. 539-558 ◽  
Author(s):  
ESRA ERDEM ◽  
VLADIMIR LIFSCHITZ ◽  
DON RINGE

The concept of a temporal phylogenetic network is a mathematical model of evolution of a family of natural languages. It takes into account the fact that languages can trade their characteristics with each other when linguistic communities are in contact, and also that a contact is only possible when the languages are spoken at the same time. We show how computational methods of answer set programming and constraint logic programming can be used to generate plausible conjectures about contacts between prehistoric linguistic communities, and illustrate our approach by applying it to the evolutionary history of Indo-European languages.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nashaiman Pervaiz ◽  
Hongen Kang ◽  
Yiming Bao ◽  
Amir Ali Abbasi

Abstract Background There has been a rapid increase in the brain size relative to body size during mammalian evolutionary history. In particular, the enlarged and globular brain is the most distinctive anatomical feature of modern humans that set us apart from other extinct and extant primate species. Genetic basis of large brain size in modern humans has largely remained enigmatic. Genes associated with the pathological reduction of brain size (primary microcephaly-MCPH) have the characteristics and functions to be considered ideal candidates to unravel the genetic basis of evolutionary enlargement of human brain size. For instance, the brain size of microcephaly patients is similar to the brain size of Pan troglodyte and the very early hominids like the Sahelanthropus tchadensis and Australopithecus afarensis. Results The present study investigates the molecular evolutionary history of subset of autosomal recessive primary microcephaly (MCPH) genes; CEP135, ZNF335, PHC1, SASS6, CDK6, MFSD2A, CIT, and KIF14 across 48 mammalian species. Codon based substitutions site analysis indicated that ZNF335, SASS6, CIT, and KIF14 have experienced positive selection in eutherian evolutionary history. Estimation of divergent selection pressure revealed that almost all of the MCPH genes analyzed in the present study have maintained their functions throughout the history of placental mammals. Contrary to our expectations, human-specific adoptive evolution was not detected for any of the MCPH genes analyzed in the present study. Conclusion Based on these data it can be inferred that protein-coding sequence of MCPH genes might not be the sole determinant of increase in relative brain size during primate evolutionary history.


2021 ◽  
Author(s):  
Caitlin Cherryh ◽  
Bui Quang Minh ◽  
Rob Lanfear

AbstractMost phylogenetic analyses assume that the evolutionary history of an alignment (either that of a single locus, or of multiple concatenated loci) can be described by a single bifurcating tree, the so-called the treelikeness assumption. Treelikeness can be violated by biological events such as recombination, introgression, or incomplete lineage sorting, and by systematic errors in phylogenetic analyses. The incorrect assumption of treelikeness may then mislead phylogenetic inferences. To quantify and test for treelikeness in alignments, we develop a test statistic which we call the tree proportion. This statistic quantifies the proportion of the edge weights in a phylogenetic network that are represented in a bifurcating phylogenetic tree of the same alignment. We extend this statistic to a statistical test of treelikeness using a parametric bootstrap. We use extensive simulations to compare tree proportion to a range of related approaches. We show that tree proportion successfully identifies non-treelikeness in a wide range of simulation scenarios, and discuss its strengths and weaknesses compared to other approaches. The power of the tree-proportion test to reject non-treelike alignments can be lower than some other approaches, but these approaches tend to be limited in their scope and/or the ease with which they can be interpreted. Our recommendation is to test treelikeness of sequence alignments with both tree proportion and mosaic methods such as 3Seq. The scripts necessary to replicate this study are available at https://github.com/caitlinch/treelikeness


Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 126 ◽  
Author(s):  
Wilson X. Guillory ◽  
Morgan R. Muell ◽  
Kyle Summers ◽  
Jason L. Brown

The evolutionary history of the Dendrobatidae, the charismatic Neotropical poison frog family, remains in flux, even after a half-century of intensive research. Understanding the evolutionary relationships between dendrobatid genera and the larger-order groups within Dendrobatidae is critical for making accurate assessments of all aspects of their biology and evolution. In this study, we provide the first phylogenomic reconstruction of Dendrobatidae with genome-wide nuclear markers known as ultraconserved elements. We performed sequence capture on 61 samples representing 33 species across 13 of the 16 dendrobatid genera, aiming for a broadly representative taxon sample. We compare topologies generated using maximum likelihood and coalescent methods and estimate divergence times using Bayesian methods. We find most of our dendrobatid tree to be consistent with previously published results based on mitochondrial and low-count nuclear data, with notable exceptions regarding the placement of Hyloxalinae and certain genera within Dendrobatinae. We also characterize how the evolutionary history and geographic distributions of the 285 poison frog species impact their conservation status. We hope that our phylogeny will serve as a backbone for future evolutionary studies and that our characterizations of conservation status inform conservation practices while highlighting taxa in need of further study.


2009 ◽  
Vol 75 (16) ◽  
pp. 5410-5416 ◽  
Author(s):  
Gabriele Margos ◽  
Stephanie A. Vollmer ◽  
Muriel Cornet ◽  
Martine Garnier ◽  
Volker Fingerle ◽  
...  

ABSTRACT Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.


Sign in / Sign up

Export Citation Format

Share Document