The impact of spatial wind variations on freshwater transport by the Alaska Coastal Current

2008 ◽  
Vol 66 (6) ◽  
pp. 899-925 ◽  
Author(s):  
John Rogers-Cotrone ◽  
Alexander E. Yankovsky ◽  
Thomas J. Weingartner
Author(s):  
Luke Phillipson ◽  
Yi Li ◽  
Ralf Toumi

AbstractThe forecast of tropical cyclone (TC) intensity is a significant challenge. In this study, we showcase the impact of strongly coupled data assimilation with hypothetical ocean currents on analyses and forecasts of Typhoon Hato (2017). Several observation simulation system experiments were undertaken with a regional coupled ocean-atmosphere model. We assimilated combinations of (or individually) a hypothetical coastal current HF radar network, a dense array of drifter floats and minimum sea-level pressure. During the assimilation, instant updates of many important atmospheric variables (winds and pressure) are achieved from the assimilation of ocean current observations using the cross-domain error covariance, significantly improving the track and intensity analysis of Typhoon Hato. As compared to a control experiment (with no assimilation), the error of minimum pressure decreased by up to 13 hPa (4 hPa / 57 % on average). The maximum wind speed error decreased by up to 18 knots (5 knots / 41 % on average). By contrast, weakly coupled implementations cannot match these reductions (10% on average). Although traditional atmospheric observations were not assimilated, such improvements indicate there is considerable potential in assimilating ocean currents from coastal HF radar, and surface drifters within a strongly coupled framework for intense landfalling TCs.


2021 ◽  
Vol 8 (4) ◽  
pp. 205-210
Author(s):  
Chang-Woong Shin ◽  
Dimitri Gutiérrez

The northern coast of Peru is a region that can rapidly detect the impact of an El Niño. To investigate the effects of the 2015-2016 El Niño on the oceanographic environment of the northern coast of Peru, the temperature and current data obtained from moored equipment at an oil platform were analyzed. Strong coastal along-shore currents of more than 0.60 m·s-1 were observed three times, although the mean current speed was 0.10 m·s-1 flowing toward the south-southwest. After the first strong current, the bottom temperature increased and the mixed layer deepened and remained there during the El Niño event. The temperature reached a maximum after the strong coastal current, then decreased gradually. An analysis of wind and sea surface height anomalies revealed that the coastal strong current was caused by Kelvin waves and the deepening of the mixed layer was not related to local winds, but to coastal Kelvin waves from the equator during the El Niño event.


2020 ◽  
Vol 8 (8) ◽  
pp. 617
Author(s):  
John Karagiorgos ◽  
Vassilios Vervatis ◽  
Sarantis Sofianos

The impact of tides on the Bay of Biscay dynamics is investigated by means of an ocean model twin-experiment, consisted of two simulations with and without tidal forcing. The study is based on a high-resolution (1/36∘) regional configuration of NEMO (Nucleus for European Modelling of the Ocean) performing one-year simulations. The results highlight the imprint of tides on the thermohaline properties and circulation patterns in three distinct dynamical areas in the model domain: the abyssal plain, the Armorican shelf and the English Channel. When tides are activated, the bottom stress is increased in the shelf areas by about two orders of magnitude with respect to the open ocean, subsequently enhancing vertical mixing and weakening stratification in the bottom boundary layer. The most prominent feature reproduced only when tides are modelled, is the Ushant front near the entrance of the English Channel. Tides appear also to constrain the freshwater transport of rivers from the continental shelf to the open ocean. The spectral analysis revealed that the tidal forcing contributes to the SSH variance at high frequencies near the semidiurnal band and to the open ocean mesoscale and small-scale features in the presence of summer stratification pattern.


Author(s):  
Canbo Xiao ◽  
Weifeng (Gordon) Zhang ◽  
Ying Chen

AbstractThis study focuses on mechanisms of shelf valley bathymetry affecting the spread of riverine freshwater in the nearshore region. In the context of Changjiang River, a numerical model is used with different no-tide idealized configurations to simulate development of unforced river plumes over a sloping bottom, with and without a shelf valley off the estuary mouth. All simulated freshwater plumes are surface-trapped with continuously growing bulges near the estuary mouth and narrow coastal currents downstream. The simulations indicate that a shelf valley tends to compress the bulge along the direction of the valley long axis and modify the incident angle of the bulge flow impinging toward the coast, which then affects the strength of the coastal current. The bulge compression results from geostrophic adjustment and isobath-following tendency of the depth-averaged flow in the bulge region. Generally, the resulting change in the direction of the bulge impinging flow enhances down-shelf momentum advection and freshwater delivery into the coastal current. Sensitivity simulations with altered river discharges (Q), Coriolis parameter, shelf bottom slope, valley geometry, and ambient stratification show that enhancement of down-shelf freshwater transport in the coastal current, ΔQc, increases with increasing valley depth within the bulge region and decreasing slope Burger number of the ambient shelf. Assuming potential vorticity conservation, a scaling formula of ΔQc?Q is developed, and it agrees well with results of the sensitivity simulations. Mechanisms of valley influences on unforced river plumes revealed here will help future studies of topographic influence on river plumes under more realistic conditions.


1994 ◽  
Vol 14 (7-8) ◽  
pp. 831-845 ◽  
Author(s):  
Z. Kowalik ◽  
J.L. Luick ◽  
T.C. Royer

1989 ◽  
Vol 9 (12) ◽  
pp. 1071-1083 ◽  
Author(s):  
James D. Schumacher ◽  
Phyllis J. Stabeno ◽  
Andrew T. Roach

2010 ◽  
Vol 40 (2) ◽  
pp. 279-294 ◽  
Author(s):  
William J. Williams ◽  
Thomas J. Weingartner ◽  
Albert J. Hermann

Abstract The cross-shelf structure of a buoyancy-driven coastal current, such as produced by a river plume, is modeled in a two-dimensional cross-shelf slice as a “wide” geostrophically balanced buoyancy front. Downwelling-favorable wind stress applied to this front leads to advection in the surface and bottom boundary layers that causes the front to become steeper so that it eventually reaches a steep quasi-steady state. This final state is either convecting, stable and steady, or stable and oscillatory depending on D/δ* and by /f 2, where D is bottom depth, δ* is an Ekman depth, by is the cross-shelf buoyancy gradient, and f is the Coriolis parameter. Descriptions of the cross-shelf circulation patterns are given and a scaling is presented for the isopycnal slope. The results potentially apply to the Alaska Coastal Current, which experiences strong, persistent downwelling-favorable wind stress during winter, but also likely have application to river plumes subjected to downwelling-favorable wind stress.


Sign in / Sign up

Export Citation Format

Share Document