Do ice nucleation active bacteria effect on ice nucleation in the real atmosphere: <italic>Pseudomonas syringae</italic>

2012 ◽  
Vol 57 (25) ◽  
pp. 2413-2418 ◽  
Author(s):  
YaLing WANG ◽  
Rui DU ◽  
YuGuang ZHOU ◽  
ZongMin LIANG
1999 ◽  
Vol 124 (6) ◽  
pp. 619-625 ◽  
Author(s):  
Beth Ann A. Workmaster ◽  
Jiwan P. Palta ◽  
Michael Wisniewski

Infrared video thermography was used to study formation of ice in leaves, stems, and fruit of cranberry (Vaccinium macrocarpon Ait. `Stevens'). Ice formed on the plant surface at -1 or -2 °C by freezing of a droplet of water containing ice nucleation-active bacteria (Pseudomonas syringae van Hall). Samples were then cooled to a minimum of -8 °C. Observations on the initiation and propagation of ice were recorded. Leaves froze only when ice was present on the abaxial surface. Once initiated, ice propagated to the stem and then readily to other leaves. In both unripe and ripe fruit, ice propagation from the stem to the fruit via the pedicel was not observed. Fruit remained supercooled for up to 1 hour after ice was present in the stem. Fruit could only be nucleated when ice was present at the calyx (distal) end. Red (ripe) berries supercooled to colder temperatures and for longer durations than blush (unripe) berries before an apparent intrinsic nucleation event occurred. These observations provide evidence that leaves are nucleated by ice penetration via stomata. The ability of fruit to supercool appears to be related to the presence of barriers to extrinsic ice propagation at both the pedicel and fruit surface. Stomata at the calyx end of the fruit in the remnant nectary area may provide avenues for extrinsic ice nucleation.


LWT ◽  
2010 ◽  
Vol 43 (9) ◽  
pp. 1414-1418 ◽  
Author(s):  
Shaozhi Zhang ◽  
Haiying Wang ◽  
Guangming Chen

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 511d-511
Author(s):  
Michele R. Warmund ◽  
James T. English

Cryoprotectants were applied at labeled rates to primary flowers of `Honeoye' strawberry (Fragaria × ananassa Duch.) plants at full bloom to determine their effects on the floral organs. Frostgard at 50 ml/liter or KDL at 22 ml/liter injured pistils and resulted in misshapened fruit. Floral buds that were closed when cryoprotectants were applied were uninjured. In other experiments, efficacies of cryoprotectants were determined after floral tissues of `Honeoye' strawberry plants were inoculated or not inoculated with the ice-nucleation-active (INA) bacteria, Pseudomonas syringae van Hall and subjected to sub-freezing temperatures. None of the products protected primary or secondary flowers against freezing injury regardless of the occurrence of INA bacteria. INA bacteria were not recovered from primary flowers of treated plants that were killed by low temperature exposure, indicating that non-bacterial nuclei may incite freezing in these tissues.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 448B-448
Author(s):  
Beth Ann A. Workmaster ◽  
Michael Wisniewski ◽  
Jiwan P. Palta

Infrared video thermography has recently been used to visualize ice nucleation and propagation in plants. At the UW–Madison Biotron facility, we studied the formation of ice in various parts of fruit-bearing cranberry (Vaccinium macrocarpon Ait.) uprights. The fruits were at the blush to red stages of ripening. Samples were nucleated at –1 or –2°C with ice-nucleating-active bacteria (Pseudomonas syringae). Following nucleation, samples were cooled to –6°C in ≈1 hour. The following observations were made: 1) When nucleated at a cut end, ice propagated rapidly throughout the stem and into the leaves at a tissue temperature of about –4°C. However, ice did not propagate from the stem through the pedicel to reach the fruit. During the 1 hour after ice propagation in the stem, the fruit remained supercooled. 2) Within the duration of the experiment, leaves could not be nucleated from the upper surface. Ice from the lower leaf surface did nucleate the leaf, and ice propagated from the leaf to the stem and other leaves readily. 3) Both red and blush berries could only be nucleated at the calyx end of the fruit. 4) Red berries supercooled to colder temperatures and for longer durations than the blush berries. 5) In support of our previous studies, red berries were able to tolerate some ice in their tissue. These observations suggest that: 1) The upper leaf surface and the fruit surface (other than the calyx end) are barriers to ice propagation in the cranberry plant; and 2) at later stages of fruit ripening the pedicel becomes an ice nucleation barrier from the stem to the fruit. This may contribute to the ability of the cranberry fruit to supercool.


1992 ◽  
Vol 38 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Dimitrios G. Georgakopoulos ◽  
David C. Sands

The epiphytic populations of Pseudomonas syringae were monitored on 23 barley entries planted in the field in four replications during the summer of 1986, and on six selected entries during the summer of 1987, from the second-leaf stage until senescence. Populations were initially low (0–3 log colony-forming units (cfu) per leaf) in all but one entry; they generally increased throughout the season, and at the end they reached 3–7 log cfu/leaf. Significant differences among the average epiphytic populations were found in the 1986 trial; only one entry, however, had a significantly different average population in the 1987 trial. The slopes of population increase were also compared: significant differences were observed in 1986 but not in 1987. In addition to epiphytic population counts, the percentage of ice nucleation active bacteria was determined in the population isolated from each leaf sample, and averaged throughout the season for each entry. Significant differences were observed in 1986 and in 1987. When the entries were ranked according to their average epiphytic population and compared between the two experiments, they were found to be very similar. The same was not true for the other parameters studied in the experiment. Key words: epiphytic populations, ice nucleation, barley.


2015 ◽  
Vol 4 (2) ◽  
pp. 63-72
Author(s):  
Abd-Alrahman Moukahel ◽  
Siham Asaad ◽  
Bakri Debbes ◽  
Cindy E. Morris ◽  
David C. Sands

As water resources become more and more scarce, production of crops under dry land conditions brings agriculture into potential conflict with other uses of water. There is an emerging awareness that the orientation of the goals of plant breeding can be shifted to create crops that can offset the negative impacts of agriculture on the environment in order to make agriculture more sustainable. Here we have explored the possibility to select lines of wheat, the crop that occupies more land than any individual crop, that contribute to the bioprecipitation cycle. In this cycle the ice nucleation (IN) active component of the microflora on leaves contributes to the ice nuclei in the atmosphere that activate processes in clouds necessary for rainfall. In line with this long term goal, we have deter-mined the capacity of breeding lines of wheat, adapted to dry land conditions, to harbor IN active bacteria.  In particular, we focused on Pseudomonas syringae, the most ubiquitous of the IN active bacteria on plants.  Because strains of this bacterium can be a plant pathogen, we evaluated the abundance of non-pathogenic IN active strains of P. syringae on a range of wheat genotypes from the research program of the International Center for Agricultural Research in the Dry Areas. Of the 25 genotypes of bread wheat examined, leaves of 12 genotypes naturally harbored P. syringae in the field.  Eight of these genotypes harbored populations of IN active P. syringae with an impaired Type 3 Secretion System (involved in pathogenicity) as high as 4 x 105 105 CFU g-1 of leaf tissue. Three of these 8 wheat genotypes harbored IN active P. syringae that were not virulent on either bread or durum wheat and for 1 of these wheat genotypes the strains of IN active P. syringae were virulent on only 1 of the 13 plant species on which pathogenicity was tested. For the wheat geno-types that had P. syringae on leaves in the field, bacteria were naturally transmitted to seed but dur-ing seed storage the bacterium could be detected on only half of the genotypes after 3 months of storage. To explore the possibility of enhancing the IN active microflora on leaves, we assessed the capacity of bacteria inoculated on seed to be transmitted to seed.  The effectiveness of the trans-mission depended on an interaction of wheat genotype and bacterial strain. Overall, this work points to the possibility of selecting plants with the goal of changing their microflora for purposes other than resistance to plant disease and in this case for the purpose of contributing to processes that could favor rainfall.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maroua Oueslati ◽  
Magdalena Mulet ◽  
Mohamed Zouaoui ◽  
Charlotte Chandeysson ◽  
Jorge Lalucat ◽  
...  

Abstract The damages observed in Tunisian citrus orchards have prompted studies on the Pseudomonas spp. responsible for blast and black pit. Prospective orchards between 2015 and 2017 showed that the diseases rapidly spread geographically and to new cultivars. A screening of Pseudomonas spp. isolated from symptomatic trees revealed their wide diversity according to phylogenetic analysis of their housekeeping rpoD and cts genes. The majority of strains were affiliated to Pseudomonas syringae pv. syringae (Phylogroup PG02b), previously described in Tunisia. However, they exhibited various BOX-PCR fingerprints and were not clonal. This work demonstrated, for the first time in Tunisia, the involvement of Pseudomonas cerasi (PG02a) and Pseudomonas congelans (PG02c). The latter did not show significant pathogenicity on citrus, but was pathogenic on cantaloupe and active for ice nucleation that could play a role in the disease. A comparative phylogenetic study of citrus pathogens from Iran, Montenegro and Tunisia revealed that P. syringae (PG02b) strains are closely related but again not clonal. Interestingly P. cerasi (PG02a) was isolated in two countries and seems to outspread. However, its role in the diseases is not fully understood and it should be monitored in future studies. The diversity of pathogenic Pseudomonas spp. and the extension of the diseases highlight that they have become complex and synergistic. It opens questions about which factors favor diseases and how to fight against them efficiently and with sustainable means.


2010 ◽  
Vol 23 (2) ◽  
pp. 198-210 ◽  
Author(s):  
Christopher R. Clarke ◽  
Rongman Cai ◽  
David J. Studholme ◽  
David S. Guttman ◽  
Boris A. Vinatzer

Pseudomonas syringae is best known as a plant pathogen that causes disease by translocating immune-suppressing effector proteins into plant cells through a type III secretion system (T3SS). However, P. syringae strains belonging to a newly described phylogenetic subgroup (group 2c) are missing the canonical P. syringae hrp/hrc cluster coding for a T3SS, flanking effector loci, and any close orthologue of known P. syringae effectors. Nonetheless, P. syringae group 2c strains are common leaf colonizers and grow on some tested plant species to population densities higher than those obtained by other P. syringae strains on nonhost species. Moreover, group 2c strains have genes necessary for the production of phytotoxins, have an ice nucleation gene, and, most interestingly, contain a novel hrp/hrc cluster, which is only distantly related to the canonical P. syringae hrp/hrc cluster. This hrp/hrc cluster appears to encode a functional T3SS although the genes hrpK and hrpS, present in the classical P. syringae hrp/hrc cluster, are missing. The genome sequence of a representative group 2c strain also revealed distant orthologues of the P. syringae effector genes avrE1 and hopM1 and the P. aeruginosa effector genes exoU and exoY. A putative life cycle for group 2c P. syringae is discussed.


Sign in / Sign up

Export Citation Format

Share Document