scholarly journals Analytical model of micro vibration fluid viscous damper under medium and high frequency excitation

2017 ◽  
Vol 47 (12) ◽  
pp. 1273-1285
Author(s):  
XiaoLei JIAO ◽  
WenLai MA ◽  
SiLiang LI ◽  
Yang ZHAO
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaolei Jiao ◽  
Jinxiu Zhang ◽  
Hongchao Zhao ◽  
Yong Yan

Purpose Bellows-type fluid viscous damper can be used to isolate micro vibration in high-precision satellites. The conventional model cannot describe hydraulic stiffness in the medium- and high-frequency domain of this damper. A simplified analytical model needs to be established to analyze hydraulic stiffness of the damping element in this damper. Design/methodology/approach In this paper, a bellows-type fluid viscous damper is researched, and a simplified model of the damping element in this damper is proposed. Based on this model, the hydraulic stiffness and damping of this damper in the medium- and high-frequency domains are studied, and a comparison is made between the analytical model and a finite element model to verify the analytical model. Findings The results show that when silicone oil has low viscosity, a model that considers the influence of the initial segment of the damping orifice is more reasonable. In the low-frequency domain, hydraulic stiffness increases quickly with frequency and remains stable when the frequency increases to a certain value; the stable stiffness can reach 106 N/m, which is much higher than the main stiffness. Excessive dynamic stiffness in the high-frequency domain will cause poor vibration isolation performance. Adding compensation bellows to the end of the original isolator may be an effective solution. Practical implications A model of the isolator containing the compensation bellows can be derived based on this analytical model. This research can also be used for dynamic modeling and vibration isolation performance analysis of a vibration isolation platform based on this bellows-type fluid viscous damper. Originality/value This paper proposed a simplified model of damping element in bellows-type fluid viscous damper, which can be used to analyze hydraulic stiffness in this damper and it was found that this damper showed stable hydraulic stiffness in the medium- and high-frequency domains.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2506
Author(s):  
Zhongzhou Du ◽  
Dandan Wang ◽  
Yi Sun ◽  
Yuki Noguchi ◽  
Shi Bai ◽  
...  

The Fokker–Planck equation accurately describes AC magnetization dynamics of magnetic nanoparticles (MNPs). However, the model for describing AC magnetization dynamics of MNPs based on Fokker-Planck equation is very complicated and the numerical calculation of Fokker-Planck function is time consuming. In the stable stage of AC magnetization response, there are differences in the harmonic phase and amplitude between the stable magnetization response of MNPs described by Langevin and Fokker–Planck equation. Therefore, we proposed an empirical model for AC magnetization harmonics to compensate the attenuation of harmonics amplitude induced by a high frequency excitation field. Simulation and experimental results show that the proposed model accurately describes the AC M–H curve. Moreover, we propose a harmonic amplitude–temperature model of a magnetic nanoparticle thermometer (MNPT) in a high-frequency excitation field. The simulation results show that the temperature error is less than 0.008 K in the temperature range 310–320 K. The proposed empirical model is expected to help improve MNPT performance.


Author(s):  
Amin Khajehdezfuly

In this paper, a two-dimensional numerical model is developed to investigate the effect of rail pad stiffness on the wheel/rail force in a slab track with harmonic irregularity. The model consists of a vehicle, nonlinear Hertz spring, rail, rail pad, concrete slab, resilient layer, concrete base, and subgrade. The rail is simulated using the Timoshenko beam element for considering the effects of high-frequency excitation produced by short-wave irregularity. The results obtained from the model are compared with those available in the literature and from the field to prove the validity of the model. Through a parametric study, the effect of variations in rail pad stiffness, vehicle speed, and harmonic irregularity on the wheel/rail force is investigated. For the slab track without any irregularity, the wheel/rail force is at maximum when the vehicle speed reaches the critical speed. As the rail pad stiffness increases, the critical speed increases. When the amplitude of irregularity is high, wheel jumping phenomenon may occur. In this situation, as the vehicle speed and rail pad stiffness are increased, the dynamic wheel/rail force is increased. In the low-frequency range, the wheel/rail force increases as the rail pad stiffness increases. In the high-frequency range, the wheel/rail force increases as the rail pad stiffness is decreased.


2019 ◽  
Vol 23 (2) ◽  
pp. 320-333
Author(s):  
Wei Guo ◽  
Xiaoli Wu ◽  
Xinna Wei ◽  
Yao Cui ◽  
Dan Bu

The passive electromagnetic damper was commonly simplified into the linear viscous model in numerical analysis, while this simplification may produce large error when the damper inductance is obvious. In this article, an optimal passive electromagnetic damper with good performance and economy characteristic is proposed by parameter optimization, where the damping density is set as the optimization objective. The hysteresis behavior of the passive electromagnetic damper is verified, and by neglecting the inductance effect, the passive electromagnetic damper can be simplified into the linear viscous model in some cases, but actually the inductance effect is obvious under the high-frequency excitation. Subsequently, the effect of inductance on seismic performance of building damper system under the near-fault earthquake is investigated by comparing the simplified linear viscous model and the accurate passive electromagnetic model. The passive electromagnetic damper was supplemented in a 9-story building, and the analysis of the accurate passive electromagnetic model was carried out by the co-simulation of MATLAB and OpenSees based on the client–server technology. It concludes that the inductance effect is obvious and causes large error when the building damper system is subjected to the near-fault earthquake, and the energy dissipation performance described by the linear viscous model is overestimated.


Sign in / Sign up

Export Citation Format

Share Document