scholarly journals Channel measurements and models for high-speed train wireless communication systems in tunnel scenarios: a survey

2017 ◽  
Vol 47 (10) ◽  
pp. 1316-1333 ◽  
Author(s):  
Chengxiang WANG ◽  
Yang YANG ◽  
Ammar GHAZAL ◽  
Xiaohu GE ◽  
Yu LIU ◽  
...  
Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


2021 ◽  
Vol 42 (4) ◽  
pp. 357-370
Author(s):  
M. A. Salhi ◽  
T. Kleine-Ostmann ◽  
T. Schrader

AbstractIncreasing data rates in wireless communications are accompanied with the need for new unoccupied and unregulated bandwidth in the electromagnetic spectrum. Higher carrier frequencies in the lower THz frequency range might offer the solution for future indoor wireless communication systems with data rates of 100 Gbit/s and beyond that cannot be located elsewhere. In this review, we discuss propagation channel measurements in an extremely broad frequency range from 50 to 325 GHz in selected indoor communication scenarios including kiosk downloading, office room communication, living rooms, and typical industrial environments.


Sign in / Sign up

Export Citation Format

Share Document