scholarly journals Using surface wave amplitude spectra to estimate the source depth of Sichuan Jiuzhaigou <italic>M</italic>7.0 earthquake

2018 ◽  
Vol 63 (13) ◽  
pp. 1223-1234
Author(s):  
Bo Zhao ◽  
Yuan Gao ◽  
Yanlu Ma
1993 ◽  
Vol 64 (3-4) ◽  
pp. 187-199 ◽  
Author(s):  
R. Street ◽  
K. Taylor ◽  
D. Jones ◽  
J. Harris ◽  
G. Steiner ◽  
...  

Abstract Source parameters for the September 7, 1988 northeastern Kentucky earthquake have been estimated from the analysis of surface-wave amplitude spectra. The source that best fits the observed data had a seismic moment of 2.0 × 1022 dyne-cm, a mechanism with strike = 198° ± 10°, dip = 51° ± 11°, and slip = −178° ± 17°, (T) trend = 160°, plunge = 25°, (P) trend = 55°, plunge = 28°, and source depth of 4 to 7 km. Thirty-two aftershocks were recorded during 2 weeks of monitoring following the mainshock; 23 of the aftershocks were locatable and fall on a roughly NW-SE linear trend. This trend is subparallel with the NW-SE nodal plane of the mainshock. Our analysis shows the 1988 event to be different from the July 27, 1980 mb,Lg = 5.3 earthquake located 11 km to the northwest. First, the 1988 event is considerably shallower (4 to 7 km) than the 1980 event (14 to 22 km). Second, data from the 1988 event suggest the motion is on a conjugate fault and is in contrast with the 1980 event, which had right-lateral strike-slip on a southeast-dipping plane.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1027-1044 ◽  
Author(s):  
A. Brüstle ◽  
W. Friederich ◽  
T. Meier ◽  
C. Gross

Abstract. Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic subduction zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording, such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only seven seismograms from three different stations at Stuttgart (STU), Göttingen (GTT) and Copenhagen (COP) could be used. Nevertheless, the waveform matching grid search yields two stable misfit minima for source depths of 25 and 50 km. Compatible fault plane solutions are either of normal faulting or thrusting type. A separate analysis of 42 impulsive first-motion polarities taken from the International Seismological Summary (ISS bulletin) excludes the thrusting mechanism and clearly favors a normal faulting solution with at least one of the potential fault planes striking in SW–NE direction. This finding is consistent with the local structure and microseismic activity of the Santorini–Amorgos graben. Since crustal thickness in the Amorgos area is generally less than 30 km, a source depth of 25 km appears to be more realistic. The second earthquake exhibits a conspicuously high ratio of body wave to surface wave amplitudes suggesting an intermediate-depth event located in the Hellenic Wadati–Benioff zone. This hypothesis is supported by a focal mechanism analysis based on first-motion polarities, which indicates a mechanism very different from that of the first event. A waveform matching grid search done to support the intermediate-depth hypothesis proved not to be fruitful because the body wave phases are overlain by strong surface wave coda of the first event inhibiting a waveform match. However, body to surface wave amplitude ratios of a modern intermediate-depth event with an epicenter close to the island of Milos observed at stations of the German Regional Seismic Network (GRSN) exhibit a pattern similar to the one observed for the second event with high values in a frequency band between 0.05 Hz and 0.3 Hz. In contrast, a shallow event with an epicenter in western Crete and nearly identical source mechanism and magnitude, shows very low ratios of body and surface wave amplitude up to 0.17 Hz and higher ratios only beyond that frequency. Based on this comparison with a modern event, we estimate the source depth of the second event to be greater than 100 km. The proximity in time and space of the two events suggests a triggering of the second, potentially deep event by the shallow first one.


1972 ◽  
pp. 101-105
Author(s):  
V. I. Frantsuzova ◽  
A. L. Levshin ◽  
G. V. Shkadinskaya

1989 ◽  
Vol 60 (3) ◽  
pp. 101-110 ◽  
Author(s):  
K. B. Taylor ◽  
R. B. Herrmann ◽  
M. W. Hamburger ◽  
G. L. Pavlis ◽  
A. Johnston ◽  
...  

Abstract The June 10 southeastern Illinois earthquake was the 11th largest earthquake felt in the central U.S. during this century. Source parameters of the main shock were estimated from an analysis of surface-wave amplitude spectra. The source that best fit the observed data has focal depth of 10 ± 1 km; mechanism with strike= 40.6°± 5.9°, dip= 76.2° ± 5.6°, slip= 159.7° ± 6.0°; tension and pressure axes of (T) trend= 357°, plunge= 24°, (P) trend= 89°, plunge= 4°; and a seismic moment of 3.1 * 1023 dyne-cm. With the combined efforts of six institutions, a 24-station analog microearthquake network was deployed around the main shock epicenter. One hundred eighty-five aftershocks were recorded in the first week of monitoring, providing 144 hypocenter determinations. A subset of 51 well recorded events was used for joint relocation and calculation of station corrections for the stations within 100 km of the main shock epicenter. Joint hypocenter locations differ only slightly from the original locations. The spatial distribution of well located aftershocks indicates that the rupture was confined to a pencil-like zone within the Precambrian basement, extending from 7 to 11 km depth.


A semi-infinite membrane, joined to a rigid surface at an arbitrary angle, supports incident unattenuated surface waves. A compressible fluid is contained within the two semi-infinite boundaries and the resultant reflected surface-wave amplitude and the scattered acoustic field is sought. A method of solution is presented for wedge angles(2 p + 1) π/2 q , p and q integers, and the exact solution is obtained for an acute angle of ¼π.


Sign in / Sign up

Export Citation Format

Share Document