scholarly journals Finite element simulation of temperature field in laser cleaning of TA15 titanium alloy oxide film

Author(s):  
ZhiChao LI ◽  
Jie XU ◽  
DongHe ZHANG ◽  
DeBin SHAN ◽  
Bin GUO
2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


Applied laser ◽  
2010 ◽  
Vol 30 (4) ◽  
pp. 284-290
Author(s):  
凡进军 Fan Jinjun ◽  
赵剑峰 Zhao Jianfeng

2018 ◽  
Vol 242 ◽  
pp. 01022
Author(s):  
Liu Heping ◽  
Sun Fenger ◽  
Yibo Fenger ◽  
Cheng Shaolei ◽  
Liu Bin

In this paper, the finite element simulation of GH4169 high temperature alloy by selective laser melting was carried out, and the microstructure was analyzed by experiments. The results show that the shape of the temperature field cloud formed by the laser heat source is different from the shape of the theoretical model, but is in the shape of the ellipse. The temperature gradient at the front end of the molten pool is larger than that of the back end of the molten pool, and the isotherm of the front end of the molten pool is more intensive. The temperature of the substrate is less affected by the temperature gradient. The temperature gradient of the front end of the melting pool is larger than the back end of the molten pool, and the temperature field of selective laser melting is like a meteor with trailing tail. In the laser heat source, the temperature isotherm is the most dense and the temperature gradient is maximum. The relative effect of mechanical properties of δ phase is very complex. When the phase is precipitated by widmanstatten structure, it is easy to produce stress concentration as a source of cracks


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


2011 ◽  
Vol 4 (3) ◽  
pp. 824-829
Author(s):  
Xuda Qin ◽  
Hao Jia ◽  
Xiaolai Ji ◽  
Xiaotai Sun ◽  
Qi Wang

Sign in / Sign up

Export Citation Format

Share Document