Finite Element Simulation and Experimental Research on the Internal Rolling Connection for Titanium Alloy Tubes

2005 ◽  
pp. 3287-3290
Author(s):  
Yuan Song Zeng
2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


2013 ◽  
Vol 712-715 ◽  
pp. 651-657 ◽  
Author(s):  
Gang Liu ◽  
Ke Huan Wang ◽  
Yi Xu ◽  
Bin Wang ◽  
Shi Jian Yuan

Gas bulging with local-stretching preforming is presented to form titanium alloy tubular part with small radius. In ordinary gas bulging process, local thinning occurs at the corners with small radius and produces dangerous position of the component. In the paper, a preforming process so-called local-stretching is applied before gas bulging. Finite element simulation and experiments were carried out to verify the effectiveness of the preforming and gas bulging process for the tubular component of titanium alloy TA15. During the local-stretching preforming, the material near the corner was kept almost rigid, but the material far away from the corner experienced stretching deformation and thickness thinning. Then, during gas bulging, the material near the corner experienced thinning deformation. So, the thickness uniformity of the final component was improved effectively.


Sign in / Sign up

Export Citation Format

Share Document