Corrosion Properties of Inconel 617 Alloy after Heat Treatment at Elevated Temperature

2001 ◽  
Vol 10 (1) ◽  
pp. 108-113 ◽  
Author(s):  
A. Kewther ◽  
B.S. Yilbas ◽  
M.S.J. Hashmi
2019 ◽  
pp. 145-150
Author(s):  
T. O. Soshina ◽  
V. R. Mukhamadyarovа

The defects destroy the integrity of the enamel, and the paper examines the influence of the physical-mechanical and corrosion properties of frits and heat treatment on the defectiveness of the enamel coating. The surface defects were scanned by electron microscope. It has been established that the defectiveness of enamel coatings depends on the melting index, temperature coefficient of linear expansion, surface tension of the frits, and heat treatment conditions. When burning rate of the enamel coating decreases, the fine-meshed structure of the enamel changes, and the size of the defects decreases.


2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.


2021 ◽  
Vol 5 ◽  
pp. 18-27
Author(s):  
A. A. Selivanov ◽  
◽  
K. V. Antipov ◽  
Yu. S. Oglodkova ◽  
A. S. Rudchenko ◽  
...  

The results of the development of a new alloy of the Al – Mg – Si system of the 6xxx series, which received the V-1381 grade, are presented. The influence of the composition and modes of heat treatment on the mechanical and corrosion properties of sheets with a thickness of 1,0 and 3,0 mm, manufactured under the conditions of FSUE “VIAM”, was investigated. Average level of sheet properties: UTS = 410 MPa, YTS = 360 MPa, El = 11.5 %; fatigue crack growth (dl/dN) = 0,59 mm/kcycle at ΔK = 18,6 MPa·m1/2, intergranular corrosion ≤ 0,15 mm, exfoliation corrosion 4 points. It was found that the structure of the sheets is recrystallized, the main strengthening phase is the coherent matrix β’(Mg2Si)-phase evenly distributed in the volume of grains with a high density. There is also a heterogeneous origin of β′-phase on dislocations and dispersoids. At grain boundaries there are zones free from emissions with a width of 15 – 20 nm. Dispersoids of various morphologies are observed in the tested samples. Temperature and heat values of phase transformations in ingots and sheets are determined and established liquidus and solidus points. The sheet weldability was evaluated by automatic argon-arc welding and the critical rate of deformation of the weld metal during crystallization was determined, at which no cracks were formed in it. Laser welding mode has been developed to ensure optimal formation of geometric parameters of the weld.


2017 ◽  
Vol 21 (5) ◽  
pp. 273-283
Author(s):  
Noppakorn Phuraya ◽  
Isaratat Phung-on ◽  
Jongkol Srithorn

CORROSION ◽  
10.5006/3813 ◽  
2021 ◽  
Author(s):  
Donovan Verkens ◽  
Reynier Revilla ◽  
Mert Günyüz ◽  
Cemil Işıksaçan ◽  
Herman Terryn ◽  
...  

The AA3003 alloy is widely used as fin material in heat exchangers. The life time of these heat exchangers is mostly determined by their corrosion properties. Twin roll casting (TRC) of AA3003 material is known to often result in the formation of a macrosegregation area of alloying elements towards the centre plane of the casted strip (centre line segregation = CLS). Considering the potential exposure of cross-sectional areas of TRC material in the heat exchanger fin application, and the relatively high corrosion susceptibility of the CLS, the study of this region is of key importance to understand the microstructural effects on the resulting corrosion mechanisms and kinetics for these materials. Typically the alloys are homogenized to bring the microstructures closer to an equilibrium state, but the impact of this heat treatment on the corrosion properties is insufficiently studied. Therefore, this study investigates the effect of different homogenization procedures on the corrosion properties of the CLS and the interaction of the intermetallic particles with the surrounding aluminium matrix. This work shows that the pitting corrosion resistance is greatly dependent on the homogenization temperature, with better corrosion resistance obtained with higher temperature, especially near the CLS. This difference in corrosion behaviour is completely attributed to a difference in microstructure and not to an oxide layer effect. Furthermore, it is observed that not only temperature will have a large influence on the corrosion resistance, but duration of the heat treatment as well.


2019 ◽  
Vol 253 ◽  
pp. 03005 ◽  
Author(s):  
M. Sroka ◽  
E. Jonda ◽  
M. Węglowski ◽  
S. Błacha

The paper presents the influence of electron - beam (EB) remelting effect on the surface layer electrochemical parameters obtained from potentiodynamic anodic polarization studies and impedance spectroscopy measurements for a set of Inconel 617 electron beam remelted obtained for different process parameters. The correlation between EBW process parameters and characteristic of surface oxide layer properties and resistance to the acidic environment were discussed. The electrochemical studies were supported by microstructural analysis of the remelted zone (RZ), heat affected zone (HAZ), native metal and observed precipitates formed under rapid solidification process. Both electrochemical technics applied to evaluate corrosion properties of remelted Inconel 617 evidenced a strong influence of the electron beam current on the corrosion resistance.


2018 ◽  
Vol 22 (1) ◽  
Author(s):  
Camila Haga Beraldo ◽  
José Wilmar Calderón-Hernández ◽  
Rodrigo Magnabosco ◽  
Neusa Alonso-Falleiros

Sign in / Sign up

Export Citation Format

Share Document