All-epitaxial growth of orientation-patterned gallium phosphide (OPGaP)

Author(s):  
Peter G. Schunemann ◽  
Lee Mohnkern ◽  
Alice Vera ◽  
Xiaoping S. Yang ◽  
Angie C. Lin ◽  
...  
Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
R. W. Ditchfield ◽  
A. G. Cullis

An energy analyzing transmission electron microscope of the Möllenstedt type was used to measure the electron energy loss spectra given by various layer structures to a spatial resolution of 100Å. The technique is an important, method of microanalysis and has been used to identify secondary phases in alloys and impurity particles incorporated into epitaxial Si films.Layers Formed by the Epitaxial Growth of Ge on Si Substrates Following studies of the epitaxial growth of Ge on (111) Si substrates by vacuum evaporation, it was important to investigate the possible mixing of these two elements in the grown layers. These layers consisted of separate growth centres which were often triangular and oriented in the same sense, as shown in Fig. 1.


Author(s):  
K Das Chowdhury ◽  
R. W. Carpenter ◽  
W. Braue

Research on reaction-bonded SiC (RBSiC) is aimed at developing a reliable structural ceramic with improved mechanical properties. The starting materials for RBSiC were Si,C and α-SiC powder. The formation of the complex microstructure of RBSiC involves (i) solution of carbon in liquid silicon, (ii) nucleation and epitaxial growth of secondary β-SiC on the original α-SiC grains followed by (iii) β>α-SiC phase transformation of newly formed SiC. Due to their coherent nature, epitaxial SiC/SiC interfaces are considered to be segregation-free and “strong” with respect to their effect on the mechanical properties of RBSiC. But the “weak” Si/SiC interface limits its use in high temperature situations. However, few data exist on the structure and chemistry of these interfaces. Microanalytical results obtained by parallel EELS and HREM imaging are reported here.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-221-Pr8-228
Author(s):  
E. de Paola ◽  
P. Duverneuil ◽  
A. Langlais ◽  
M. Nguyen

1982 ◽  
Vol 43 (C5) ◽  
pp. C5-3-C5-10 ◽  
Author(s):  
M. C. Joncour ◽  
J. L. Benchimol ◽  
J. Burgeat ◽  
M. Quillec

1983 ◽  
Vol 44 (C4) ◽  
pp. C4-233-C4-241
Author(s):  
B. Hamilton ◽  
A. R. Peaker ◽  
D. R. Wight
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document