scholarly journals Streak artifact suppression in photoacoustic computed tomography using adaptive back projection

2019 ◽  
Vol 10 (9) ◽  
pp. 4803 ◽  
Author(s):  
Chuangjian Cai ◽  
Xuanhao Wang ◽  
Ke Si ◽  
Jun Qian ◽  
Jianwen Luo ◽  
...  
2014 ◽  
Vol 4 ◽  
pp. 38 ◽  
Author(s):  
Lukas Ebner ◽  
Felix Knobloch ◽  
Adrian Huber ◽  
Julia Landau ◽  
Daniel Ott ◽  
...  

Objective: The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.


2003 ◽  
Vol 30 (9) ◽  
pp. 2465-2474 ◽  
Author(s):  
U. van Stevendaal ◽  
J.-P. Schlomka ◽  
A. Harding ◽  
M. Grass

Author(s):  
Genwei Ma ◽  
Xing Zhao ◽  
Yining Zhu ◽  
Huitao Zhang

Abstract To solve the problem of learning based computed tomography (CT) reconstruction, several reconstruction networks were invented. However, applying neural network to tomographic reconstruction still remains challenging due to unacceptable memory space requirement. In this study, we presents a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which, respectively, correspond to the filter and back-projection of FBP method. The first module of LBRN decouples the relationship of Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection module, can use the block reconstruction strategy. Due to each image block is only connected with part filtered projection data, the network structure is greatly simplified and the parameters of the whole network is dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest (ROI), metal artifacts reduction and real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.


2020 ◽  
Vol 20 ◽  
pp. 100213
Author(s):  
Shuai Na ◽  
Xiaoyun Yuan ◽  
Li Lin ◽  
Julio Isla ◽  
David Garrett ◽  
...  

2015 ◽  
Vol 770 ◽  
pp. 491-494
Author(s):  
Andrey E. Kovtanyuk

A computed tomography problem as a 3D reconstruction of density distribution is considered. The input data are obtained as a result of irradiations. The solution of the computed tomography problem is presented as a set of cross-section images. The reconstruction in a single cross-section is performed by algorithm of convolution and back projection. The parallelization is fulfilled over a set of cross-sections by use of the MPI technology.


2005 ◽  
Author(s):  
L. John Schreiner ◽  
Myron Rogers ◽  
Greg Salomons ◽  
Andrew Kerr

2017 ◽  
Vol 22 (2) ◽  
pp. 88-92
Author(s):  
Ryan Verity ◽  
David Leswick ◽  
Brent Burbridge ◽  
Rhonda Bryce ◽  
Hyun Lim

Abstract Background: The safety of power-injectable implanted arm ports is well established, but there is insufficient data to conclude that image quality of computed tomography resulting from contrast introduced via the port is of equal quality to images derived from contrast introduced via traditional peripheral access. The objective of this study was to determine whether the image quality of computed tomography pulmonary embolism and computed tomography aorta studies would differ when injecting contrast via an implanted arm port vs a peripheral intravenous site. We hypothesized that injecting via an implanted arm port would produce better-quality images, the result of more appropriate timing and less streak artifact. Methods: Scans from a provincial database search for patients who underwent a computed tomography pulmonary embolism or aorta study with contrast injection via the implanted arm port and thin section images available, were reviewed (pulmonary embolism studies n = 3, aorta studies n = 3). Only a limited number of patients were available for review because there are currently few patients with these ports in place and we limited evaluation to thin section images. Comparison was made with 6 control patients who did not have a port and had received a peripheral arm intravenous contrast injection for these study types. Objective measurements included signal-to-noise ratio and contrast-to-noise ratio of the pulmonary arteries (4 sites) and aorta (2 sites) as appropriate for scan type. Subjective analysis of image quality was performed by 2 radiologists. Results: Although sample size was limited, the implanted arm port group had similar or higher mean signal-to-noise ratio and contrast-to-noise ratio values at all sites. Subjective assessments showed the implanted arm port group to have similar or better opacification and diagnostic confidence; similar or less streak artifact was also observed at each of the sites. Conclusions: These exploratory results suggest that studies with implanted arm port injection can generate high-quality images on both objective and subjective assessment, similar to, or possibly better than, images generated from usual peripheral intravenous access for contrast injection.


1996 ◽  
Vol 15 (3) ◽  
pp. 333-342 ◽  
Author(s):  
C.J. Ritchie ◽  
C.R. Crawford ◽  
J.D. Godwin ◽  
K.F. King ◽  
Yongmin Kim

Sign in / Sign up

Export Citation Format

Share Document