scholarly journals Multimodal microscopy for the simultaneous visualization of five different imaging modalities using a single light source: Publisher’s Note

2021 ◽  
Author(s):  
Kelly Cohen
2021 ◽  
Author(s):  
Jiheun Ryu ◽  
Unkyo Kang ◽  
Joon Woo Song ◽  
Junyoung kim ◽  
Jin Kim ◽  
...  

Author(s):  
Michael T. Bucek ◽  
Howard J. Arnott

It is believed by the authors, with supporting experimental evidence, that as little as 0.5°, or less, knife clearance angle may be a critical factor in obtaining optimum quality ultrathin sections. The degree increments located on the knife holder provides the investigator with only a crude approximation of the angle at which the holder is set. With the increments displayed on the holder one cannot set the clearance angle precisely and reproducibly. The ability to routinely set this angle precisely and without difficulty would obviously be of great assistance to the operator. A device has been contrived to aid the investigator in precisely setting the clearance angle. This device is relatively simple and is easily constructed. It consists of a light source and an optically flat, front surfaced mirror with a minute black spot in the center. The mirror is affixed to the knife by placing it permanently on top of the knife holder.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


Author(s):  
P.M. Houpt ◽  
A. Draaijer

In confocal microscopy, the object is scanned by the coinciding focal points (confocal) of a point light source and a point detector both focused on a certain plane in the object. Only light coming from the focal point is detected and, even more important, out-of-focus light is rejected.This makes it possible to slice up optically the ‘volume of interest’ in the object by moving it axially while scanning the focused point light source (X-Y) laterally. The successive confocal sections can be stored in a computer and used to reconstruct the object in a 3D image display.The instrument described is able to scan the object laterally with an Ar ion laser (488 nm) at video rates. The image of one confocal section of an object can be displayed within 40 milliseconds (1000 х 1000 pixels). The time to record the total information within the ‘volume of interest’ normally depends on the number of slices needed to cover it, but rarely exceeds a few seconds.


1988 ◽  
Vol 21 (2) ◽  
pp. 219-244
Author(s):  
Anton N. Hasso ◽  
John A. Ledington

VASA ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 361-375 ◽  
Author(s):  
Harold Goerne ◽  
Abhishek Chaturvedi ◽  
Sasan Partovi ◽  
Prabhakar Rajiah

Abstract. Although pulmonary embolism is the most common abnormality of the pulmonary artery, there is a broad spectrum of other congenital and acquired pulmonary arterial abnormalities. Multiple imaging modalities are now available to evaluate these abnormalities of the pulmonary arteries. CT and MRI are the most commonly used cross-sectional imaging modalities that provide comprehensive information on several aspects of these abnormalities, including morphology, function, risk-stratification and therapy-monitoring. In this article, we review the role of state-of-the-art pulmonary arterial imaging in the evaluation of non-thromboembolic disorders of pulmonary artery.


VASA ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 345-359 ◽  
Author(s):  
Yuki Tanabe ◽  
Luis Landeras ◽  
Abed Ghandour ◽  
Sasan Partovi ◽  
Prabhakar Rajiah

Abstract. The pulmonary arteries are affected by a variety of congenital and acquired abnormalities. Multiple state-of-the art imaging modalities are available to evaluate these pulmonary arterial abnormalities, including computed tomography (CT), magnetic resonance imaging (MRI), echocardiography, nuclear medicine imaging and catheter pulmonary angiography. In part one of this two-part series on state-of-the art pulmonary arterial imaging, we review these imaging modalities, focusing particularly on CT and MRI. We also review the utility of these imaging modalities in the evaluation of pulmonary thromboembolism.


2018 ◽  
Vol 32 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Kenta Matsumura ◽  
Koichi Shimizu ◽  
Peter Rolfe ◽  
Masanori Kakimoto ◽  
Takehiro Yamakoshi

Abstract. Pulse volume (PV) and its related measures, such as modified normalized pulse volume (mNPV), direct-current component (DC), and pulse rate (PR), derived from the finger-photoplethysmogram (FPPG), are useful psychophysiological measures. Although considerable uncertainties exist in finger-photoplethysmography, little is known about the extent of the adverse effects on the measures. In this study, we therefore examined the inter-method reliability of each index across sensor positions and light intensities, which are major disturbance factors of FPPG. From the tips of the index fingers of 12 participants in a resting state, three simultaneous FPPGs having overlapping optical paths were recorded, with their light intensity being changed in three steps. The analysis revealed that the minimum values of three coefficients of Cronbach’s α for ln PV, ln mNPV, ln DC, and PR across positions were .948, .850, .922, and 1.000, respectively, and that those across intensities were .774, .985, .485, and .998, respectively. These findings suggest that ln mNPV and PR can be used for psychophysiological studies irrespective of minor differences in sensor attachment positions and light source intensity, whereas and ln DC can also be used for such studies but under the condition of light intensity being fixed.


2003 ◽  
Vol 104 ◽  
pp. 557-561 ◽  
Author(s):  
M. R. Howells ◽  
H. Chapman ◽  
S. Hau-Riege ◽  
H. He ◽  
S. Marchesini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document