Visual Latency as a Function of Stimulus Onset, Offset, and Background Luminance*

1971 ◽  
Vol 61 (9) ◽  
pp. 1190 ◽  
Author(s):  
Ralph W. Hansteen
Author(s):  
Tatiana Malevich ◽  
Antimo Buonocore ◽  
Ziad M. Hafed

AbstractMicrosaccades have a steady rate of occurrence during maintained gaze fixation, which gets transiently modulated by abrupt sensory stimuli. Such modulation, characterized by a rapid reduction in microsaccade frequency followed by a stronger rebound phase of high microsaccade rate, is often described as the microsaccadic rate signature, owing to its stereotyped nature. Here we investigated the impacts of stimulus polarity (luminance increments or luminance decrements relative to background luminance) and size on the microsaccadic rate signature. We presented brief visual flashes consisting of large or small white or black stimuli over an otherwise gray image background. Both large and small stimuli caused robust early microsaccadic inhibition, but only small ones caused a subsequent increase in microsaccade frequency above baseline microsaccade rate. Critically, small black stimuli were always associated with stronger modulations in microsaccade rate after stimulus onset than small white stimuli, particularly in the post-inhibition rebound phase of the microsaccadic rate signature. Because small stimuli were also associated with expected direction oscillations to and away from their locations of appearance, these stronger rate modulations in the rebound phase meant higher likelihoods of microsaccades opposite the black flash locations relative to the white flash locations. Our results demonstrate that the microsaccadic rate signature is sensitive to stimulus polarity, and they point to dissociable neural mechanisms underlying early microsaccadic inhibition after stimulus onset and later microsaccadic rate rebound at longer times thereafter. These results also demonstrate early access of oculomotor control circuitry to sensory representations, particularly for momentarily inhibiting saccade generation.New and noteworthyMicrosaccades are small saccades that occur during gaze fixation. Microsaccade rate is transiently reduced after sudden stimulus onsets, and then strongly rebounds before returning to baseline. We explored the influence of stimulus polarity (black versus white) on this “rate signature”. We found that small black stimuli cause stronger microsaccadic modulations than white ones, but primarily in the rebound phase. This suggests dissociated neural mechanisms for microsaccadic inhibition and subsequent rebound in the microsaccadic rate signature.


Author(s):  
Tatiana Malevich ◽  
Antimo Buonocore ◽  
Ziad M. Hafed

Microsaccades have a steady rate of occurrence during maintained gaze fixation, which gets transiently modulated by abrupt sensory stimuli. Such modulation, characterized by a rapid reduction in microsaccade frequency followed by a stronger rebound phase of high microsaccade rate, is often described as the microsaccadic rate signature, owing to its stereotyped nature. Here we investigated the impacts of stimulus polarity (luminance increments or luminance decrements relative to background luminance) and size on the microsaccadic rate signature. We presented brief, behaviorally-irrelevant visual flashes consisting of large or small white or black stimuli over an otherwise gray image background. Both large and small stimuli caused robust early microsaccadic inhibition, but post-inhibition microsaccade rate rebound was significantly delayed and weakened for large stimuli when compared to small ones. Critically, small black stimuli were associated with stronger modulations in the microsaccade rate signature than small white stimuli, particularly in the post-inhibition rebound phase, and black stimuli also amplified the incidence of early stimulus-directed microsaccades. Our results demonstrate that the microsaccadic rate signature is sensitive to stimulus size and polarity, and they point to dissociable neural mechanisms underlying early microsaccadic inhibition after stimulus onset and later microsaccadic rate rebound at longer times thereafter. These results also demonstrate early access of oculomotor control circuitry to diverse sensory representations, particularly for momentarily inhibiting saccade generation with short latencies.


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2010 ◽  
Vol 24 (3) ◽  
pp. 198-209 ◽  
Author(s):  
Yan Wang ◽  
Jianhui Wu ◽  
Shimin Fu ◽  
Yuejia Luo

In the present study, we used event-related potentials (ERPs) and behavioral measurements in a peripherally cued line-orientation discrimination task to investigate the underlying mechanisms of orienting and focusing in voluntary and involuntary attention conditions. Informative peripheral cue (75% valid) with long stimulus onset asynchrony (SOA) was used in the voluntary attention condition; uninformative peripheral cue (50% valid) with short SOA was used in the involuntary attention condition. Both orienting and focusing were affected by attention type. Results for attention orienting in the voluntary attention condition confirmed the “sensory gain control theory,” as attention enhanced the amplitude of the early ERP components, P1 and N1, without latency changes. In the involuntary attention condition, compared with invalid trials, targets in the valid trials elicited larger and later contralateral P1 components, and smaller and later contralateral N1 components. Furthermore, but only in the voluntary attention condition, targets in the valid trials elicited larger N2 and P3 components than in the invalid trials. Attention focusing in the involuntary attention condition resulted in larger P1 components elicited by targets in small-cue trials compared to large-cue trials, whereas in the voluntary attention condition, larger P1 components were elicited by targets in large-cue trials than in small-cue trials. There was no interaction between orienting and focusing. These results suggest that orienting and focusing of visual-spatial attention are deployed independently regardless of attention type. In addition, the present results provide evidence of dissociation between voluntary and involuntary attention during the same task.


2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


Author(s):  
Demian Scherer ◽  
Dirk Wentura

Abstract. Recent theories assume a mutual facilitation in case of semantic overlap for concepts being activated simultaneously. We provide evidence for this claim using a semantic priming paradigm. To test for mutual facilitation of related concepts, a perceptual identification task was employed, presenting prime-target pairs briefly and masked, with an SOA of 0 ms (i.e., prime and target were presented concurrently, one above the other). Participants were instructed to identify the target. In Experiment 1, a cue defining the target was presented at stimulus onset, whereas in Experiment 2 the cue was not presented before the offset of stimuli. Accordingly, in Experiment 2, a post-cue task was merged with the perceptual identification task. We obtained significant semantic priming effects in both experiments. This result is compatible with the view that two concepts can both be activated in parallel and can mutually facilitate each other if they are related.


2001 ◽  
Author(s):  
Harvey Babkoff ◽  
Elisheva Ben-Artzi ◽  
Leah Fostick

2021 ◽  
Vol 12 (3) ◽  
pp. 1-20
Author(s):  
Damodar Reddy Edla ◽  
Shubham Dodia ◽  
Annushree Bablani ◽  
Venkatanareshbabu Kuppili

Brain-Computer Interface is the collaboration of the human brain and a device that controls the actions of a human using brain signals. Applications of brain-computer interface vary from the field of entertainment to medical. In this article, a novel Deceit Identification Test is proposed based on the Electroencephalogram signals to identify and analyze the human behavior. Deceit identification test is based on P300 signals, which have a positive peak from 300 ms to 1,000 ms of the stimulus onset. The aim of the experiment is to identify and classify P300 signals with good classification accuracy. For preprocessing, a band-pass filter is used to eliminate the artifacts. The feature extraction is carried out using “symlet” Wavelet Packet Transform (WPT). Deep Neural Network (DNN) with two autoencoders having 10 hidden layers each is applied as the classifier. A novel experiment is conducted for the collection of EEG data from the subjects. EEG signals of 30 subjects (15 guilty and 15 innocent) are recorded and analyzed during the experiment. BrainVision recorder and analyzer are used for recording and analyzing EEG signals. The model is trained for 90% of the dataset and tested for 10% of the dataset and accuracy of 95% is obtained.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


2012 ◽  
Vol 107 (4) ◽  
pp. 1123-1141 ◽  
Author(s):  
Paweł Kuśmierek ◽  
Michael Ortiz ◽  
Josef P. Rauschecker

Auditory cortical processing is thought to be accomplished along two processing streams. The existence of a posterior/dorsal stream dealing, among others, with the processing of spatial aspects of sound has been corroborated by numerous studies in several species. An anterior/ventral stream for the processing of nonspatial sound qualities, including the identification of sounds such as species-specific vocalizations, has also received much support. Originally discovered in anterolateral belt cortex, most recent work on the anterior/ventral pathway has been performed on far anterior superior temporal (ST) areas and on ventrolateral prefrontal cortex (VLPFC). Regions of the anterior/ventral stream near its origin in early auditory areas have been less explored. In the present study, we examined three early auditory regions with different anteroposterior locations (caudal, middle, and rostral) in awake rhesus macaques. We analyzed how well classification based on sound-evoked activity patterns of neuronal populations replicates the original stimulus categories. Of the three regions, the rostral region (rR), which included core area R and medial belt area RM, yielded the greatest classification success across all stimulus classes or between classes of natural sounds. Starting from ∼80 ms past stimulus onset, clustering based on the population response in rR became clearly more successful than clustering based on responses from any other region. Our study demonstrates that specialization for sound-identity processing can be found very early in the auditory ventral stream. Furthermore, the fact that this processing develops over time can shed light on underlying mechanisms. Finally, we show that population analysis is a more sensitive method for revealing functional specialization than conventional types of analysis.


Sign in / Sign up

Export Citation Format

Share Document