Emotional Reactivity to Visual Content as Revealed by ERP Component Clustering

2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.

SLEEP ◽  
2021 ◽  
Author(s):  
Ernesto Sanz-Arigita ◽  
Yannick Daviaux ◽  
Marc Joliot ◽  
Bixente Dilharreguy ◽  
Jean-Arthur Micoulaud-Franchi ◽  
...  

Abstract Study objectives Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. Methods We used 3T fMRI to determine neural reactivity during the presentation of standardized short, 10-40-s, humorous films in insomnia patients (n=20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n=20, 19 females, aged 26.7 +/- 7.0 years), and assessed humour ratings through a visual analogue scale (VAS). Seed-based functional connectivity was analysed for left and right amygdala networks: group-level mixed-effects analysis (FLAME; FSL) was used to compare amygdala connectivity maps between groups. Results fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in insomnia patients than in controls in several brain network clusters within the reward brain network, without humour rating differences between groups (p = 0.6). For left amygdala connectivity, cluster maxima were in the left caudate (Z=3.88), left putamen (Z=3.79) and left anterior cingulate gyrus (Z=4.11), while for right amygdala connectivity, cluster maxima were in the left caudate (Z=4.05), right insula (Z=3.83) and left anterior cingulate gyrus (Z=4.29). Cluster maxima of the right amygdala network were correlated with hyperarousal scores in insomnia patients only. Conclusions Presentation of humorous films leads to increased brain activity in the neural reward network for insomnia patients compared to controls, related to hyperarousal features in insomnia patients, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions.


2003 ◽  
Vol 89 (5) ◽  
pp. 2516-2527 ◽  
Author(s):  
Laurent Petit ◽  
Michael S. Beauchamp

We used event-related fMRI to measure brain activity while subjects performed saccadic eye, head, and gaze movements to visually presented targets. Two distinct patterns of response were observed. One set of areas was equally active during eye, head, and gaze movements and consisted of the superior and inferior subdivisions of the frontal eye fields, the supplementary eye field, the intraparietal sulcus, the precuneus, area MT in the lateral occipital sulcus and subcortically in basal ganglia, thalamus, and the superior colliculus. These areas have been previously observed in functional imaging studies of human eye movements, suggesting that a common set of brain areas subserves both oculomotor and head movement control in humans, consistent with data from single-unit recording and microstimulation studies in nonhuman primates that have described overlapping eye- and head-movement representations in oculomotor control areas. A second set of areas was active during head and gaze movements but not during eye movements. This set of areas included the posterior part of the planum temporale and the cortex at the temporoparietal junction, known as the parieto-insular vestibular cortex (PIVC). Activity in PIVC has been observed during imaging studies of invasive vestibular stimulation, and we confirm its role in processing the vestibular cues accompanying natural head movements. Our findings demonstrate that fMRI can be used to study the neural basis of head movements and show that areas that control eye movements also control head movements. In addition, we provide the first evidence for brain activity associated with vestibular input produced by natural head movements as opposed to invasive caloric or galvanic vestibular stimulation.


2021 ◽  
Author(s):  
Tao Yu ◽  
Shihui Han

Perceived cues signaling others' pain induce empathy that in turn motivates altruistic behavior toward those who appear suffering. This perception-emotion-behavior reactivity is the core of human altruism but does not always occur in real life situations. Here, by integrating behavioral and multimodal neuroimaging measures, we investigate neural mechanisms underlying the functional role of beliefs of others' pain in modulating empathy and altruism. We show evidence that decreasing (or enhancing) beliefs of others' pain reduces (or increases) subjective estimation of others' painful emotional states and monetary donations to those who show pain expressions. Moreover, decreasing beliefs of others' pain attenuates neural responses to perceived cues signaling others' pain within 200 ms after stimulus onset and modulate neural responses to others' pain in the frontal cortices and temporoparietal junction. Our findings highlight beliefs of others' pain as a fundamental cognitive basis of human empathy and altruism and unravel the intermediate neural architecture.


2020 ◽  
Vol 45 (9) ◽  
pp. 855-864
Author(s):  
Elisa Dal Bò ◽  
Claudio Gentili ◽  
Cinzia Cecchetto

Abstract Across phyla, chemosignals are a widely used form of social communication and increasing evidence suggests that chemosensory communication is present also in humans. Chemosignals can transfer, via body odors, socially relevant information, such as specific information about identity or emotional states. However, findings on neural correlates of processing of body odors are divergent. The aims of this meta-analysis were to assess the brain areas involved in the perception of body odors (both neutral and emotional) and the specific activation patterns for the perception of neutral body odor (NBO) and emotional body odor (EBO). We conducted an activation likelihood estimation (ALE) meta-analysis on 16 experiments (13 studies) examining brain activity during body odors processing. We found that the contrast EBO versus NBO resulted in significant convergence in the right middle frontal gyrus and the left cerebellum, whereas the pooled meta-analysis combining all the studies of human odors showed significant convergence in the right inferior frontal gyrus. No significant cluster was found for NBOs. However, our findings also highlight methodological heterogeneity across the existing literature. Further neuroimaging studies are needed to clarify and support the existing findings on neural correlates of processing of body odors.


2007 ◽  
Vol 19 (6) ◽  
pp. 1013-1020 ◽  
Author(s):  
Gorana Pobric ◽  
Stefan R. Schweinberger ◽  
Michal Lavidor

Recent evidence suggests that priming of objects across different images (abstract priming) and priming of specific images of an object (form-specific priming) are mediated by dissociable neural processing subsystems that operate in parallel and are predominantly linked to left and right hemispheric processing, respectively [Marsolek, C. J. Dissociable neural subsystems underlie abstract and specific object recognition. Psychological Science, 10, 111–118, 1999]. Previous brain imaging studies have provided important information about the neuroanatomical regions that are involved in form-specific and abstract priming; however, these techniques did not fully establish the functional significance of priming-related changes in cortical brain activity. Here, we used repetitive transcranial magnetic stimulation (rTMS) in order to establish the functional role of the right occipital cortex in form-specific priming [Kroll, N. E. A., Yonelinas, A. P., Kishiyama, M. M., Baynes, K., Knight, R. T., & Gazzaniga, M. S. The neural substrates of visual implicit memory: Do the two hemispheres play different roles? Journal of Cognitive Neuroscience, 15, 833–842, 2003]. Compared to no TMS and sham TMS, rTMS of the right occipital cortex disrupted immediate form-specific priming in a semantic categorization task. Left occipital rTMS, on the other hand, had no converse effect on abstractive priming. Abstract priming may involve deeper semantic processing and may be unresponsive to magnetic stimulation of a single cortical locus. Our TMS results show that form-specific priming relies on a visual word-form system localized in the right occipital lobe, in line with the predictions from divided visual field behavioral studies [Marsolek, 1999].


2006 ◽  
Vol 18 (4) ◽  
pp. 522-538 ◽  
Author(s):  
Christian C. Ruff ◽  
Jon Driver

Attending to the location of an expected visual target can lead to anticipatory activations in spatiotopic occipital cortex, emerging before target onset. But less is known about how the brain may prepare for a distractor at a known location remote from the target. In a psychophysical experiment, we found that trial-to-trial advance knowledge about the presence of a distractor in the target-opposite hemifield significantly reduced its behavioral cost. In a subsequent functional magnetic resonance imaging experiment with similar task and stimuli, we found anticipatory activations in the occipital cortex contralateral to the expected distractor, but no additional target modulation, when participants were given advance information about a distractor's subsequent presence and location. Several attention-related control structures (frontal eye fields and superior parietal cortex) were active during attentional preparation for all trials, whereas the left superior prefrontal and right angular gyri were additionally activated when a distractor was anticipated. The right temporoparietal junction showed stronger functional coupling with occipital regions during preparation for trials with an isolated target than for trials with a distractor expected. These results show that anticipation of a visual distractor at a known location, remote from the target, can lead to (1) a reduction in the behavioral cost of that distractor, (2) preparatory modulation of the occipital cortex contralateral to the location of the expected distractor, and (3) anticipatory activation of distinct parietal and frontal brain structures. These findings indicate that specific components of preparatory visual attention may be devoted to minimizing the impact of distractors, not just to enhancements of target processing.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yang Hu ◽  
Chen Hu ◽  
Edmund Derrington ◽  
Brice Corgnet ◽  
Chen Qu ◽  
...  

Corruption often involves bribery, when a briber suborns a power-holder to gain advantages usually at a cost of moral transgression. Despite its wide presence in human societies, the neurocomputational basis of bribery remains elusive. Here, using model-based fMRI, we investigated the neural substrates of how a power-holder decides to accept or reject a bribe. Power-holders considered two types of moral cost brought by taking bribes: the cost of conniving with a fraudulent briber, encoded in the anterior insula, and the harm brought to a third party, represented in the right temporoparietal junction. These moral costs were integrated into a value signal in the ventromedial prefrontal cortex. The dorsolateral prefrontal cortex was selectively engaged to guide anti-corrupt behaviors when a third party would be harmed. Multivariate and connectivity analyses further explored how these neural processes depend on individual differences. These findings advance our understanding of the neurocomputational mechanisms underlying corrupt behaviors.


2021 ◽  
Author(s):  
Victoria Klimaj ◽  
Adam Safron ◽  
David Sylva ◽  
A.M. Rosenthal ◽  
Meng Li ◽  
...  

A small number of studies have examined neuroanatomical differences between heterosexual and homosexual men and women. These studies have yielded mixed support for the hypothesis that homosexual individuals possess sex-atypical neural anatomy. However, in addition to differing along dimensions of sex-typicality, non-heterosexual individuals’ brains may be different in other ways, potentially as a result of differences in experience. One way in which sexual minorities may differ from others is in their social experiences. Bisexual individuals in particular may occupy unique social niches and experience complex social environments as a result of sexual and romantic interactions with both men and women, and potentially also in terms of having a less-widely-recognized sexual identity than heterosexual and homosexual individuals. Based on this idea, we hypothesized that bisexual individuals may show increased gray matter volume and activity in two social-cognition-related areas of the brain: the right temporoparietal junction (rTPJ) and the dorsomedial prefrontal cortex (dmPFC). Contrary to our hypotheses, neither brain structure nor brain activity in the rTPJ and dmPFC were significantly greater in bisexual individuals than in heterosexual and homosexual individuals. Instead, we found larger rTPJ volumes in heterosexual women than in homosexual women. We also found larger relative volumes in the dmPFC in women than in men, consistent with a recent large-scale study of sex differences, and potentially indicative of sex and gender differences in social cognition.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Seon-Ok Kim ◽  
Ji-Eun Jeong ◽  
Yun-Ah Oh ◽  
Ha-Ram Kim ◽  
Sin-Ae Park

This study aimed to compare the brain activity and emotional states of elementary school students during horticultural and nonhorticultural activities. A total of 30 participants with a mean age of 11.4 ± 1.3 years were included. This experiment was conducted at Konkuk University campus in Korea. Participants performed horticultural activities such as harvesting, planting, sowing seeds, and mixing soil. Nonhorticultural activities included playing with a ball, solving math problems, watching animation videos, folding paper, and reading a book. The study had a crossover experimental design. Brain activity of the prefrontal lobes was measured by electroencephalography during each activity for 3 minutes. On completion of each activity, participants answered a subjective emotion questionnaire using the semantic differential method (SDM). Results showed that relative theta (RT) power spectrum was significantly lower in both prefrontal lobes of participants when engaged in harvesting and reading a book. The relative mid beta (RMB) power spectrum was significantly higher in both prefrontal lobes when participants engaged in harvesting and playing with a ball. The ratio of the RMB power spectrum to the RT power spectrum reflects concentration. This ratio increased during harvesting activity, indicating that children’s concentration also increased. The sensorimotor rhythm (SMR) from mid beta to theta (RSMT), another indicator of concentration, was significantly higher in the right prefrontal lobe during harvesting than during other activities. Furthermore, SDM results showed that the participants felt more natural and relaxed when performing horticultural activities than nonhorticultural activities. Horticultural activities may improve brain activity and psychological relaxation in children. Harvesting activity was most effective for improving children’s concentration compared with nonhorticultural activities.


2021 ◽  
Author(s):  
Jimmy Y. Zhong

Over the past two decades, many neuroimaging studies have attempted uncover the brain regions and networks involved in path integration and identify the underlying neurocognitive mechanisms. Although these studies made inroads into the neural basis of path integration, they have yet to offer a full disclosure of the functional specialization of the brain regions supporting path integration. In this paper, I reviewed notable neuroscientific studies on visual path integration in humans, identified the commonalities and discrepancies in their findings, and incorporated fresh insights from recent path integration studies. Specifically, this paper presented neuroscientific studies performed with virtual renditions of the triangle/path completion task and addressed whether or not the hippocampus is necessary for human path integration. Based on studies that showed evidence supporting and negating the involvement of the hippocampal formation in path integration, this paper introduces the proposal that the use of different path integration strategies may determine the extent to which the hippocampus and entorhinal cortex are engaged during path integration. To this end, recent studies that investigated the impact of different path integration strategies on behavioral performance and functional brain activity were discussed. Methodological concerns were raised with feasible recommendations for improving the experimental design of future strategy-related path integration studies, which can cover cognitive neuroscience research on age-related differences in the role of the hippocampal formation in path integration and Bayesian modelling of the interaction between landmark and self-motion cues. The practical value of investigating different path integration strategies was also discussed briefly from a biomedical perspective.


Sign in / Sign up

Export Citation Format

Share Document