Depth-increment detection function for individual spatial channels

1985 ◽  
Vol 2 (7) ◽  
pp. 1211 ◽  
Author(s):  
David R. Badcock ◽  
Clifton M. Schor
Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 977-994 ◽  
Author(s):  
Harvey S Smallman ◽  
Donald I A MacLeod

How are binocular disparities encoded and represented in the human visual system? An ‘encoding cube’ diagram is introduced to visualise differences between competing models. To distinguish the models experimentally, the depth-increment-detection function (discriminating disparity d from d ± Δ d) was measured as a function of standing disparity ( d) with spatially filtered random-dot stereograms of different centre spatial frequencies. Stereothresholds degraded more quickly as standing disparity was increased with stimuli defined by high rather than low centre spatial frequency. This is consistent with a close correlation between the spatial scale of detection mechanisms and the disparities they process. It is shown that a simple model, where discrimination is limited by the noisy ratio of outputs of three disparity-selective mechanisms at each spatial scale, can account for the data. It is not necessary to invoke a population code for disparity to model the depth-increment-detection function. This type of encoding scheme implies insensitivity to large interocular phase differences. Might the system have developed a strategy to disambiguate or shift the matches made at fine scales with those made at the coarse scales at large standing disparities? In agreement with Rohaly and Wilson, no evidence was found that this is so. Such a scheme would predict that stereothresholds determined with targets composed of compounds of high and low frequency should be superior to those of either component alone. Although a small stereoacuity benefit was found at small disparities, the more striking result was that stereothresholds for compound-frequency targets were actually degraded at large standing disparities. The results argue against neural shifting of the matching range of fine scales by coarse-scale matches posited by certain stereo models.


BMC Genetics ◽  
2003 ◽  
Vol 4 (Suppl 1) ◽  
pp. S40 ◽  
Author(s):  
Michael D Badzioch ◽  
Hawkins B DeFrance ◽  
Gail P Jarvik

2021 ◽  
Author(s):  
Shuai Ding ◽  
Haijun Meng ◽  
Jun Huang ◽  
Haitao Chen ◽  
Xiaobin He

2006 ◽  
Vol 15 (2) ◽  
pp. 197 ◽  
Author(s):  
Francisco Castro Rego ◽  
Filipe Xavier Catry

In the management of forest fires, early detection and fast response are known to be the two major actions that limit both fire loss and fire-associated costs. There are several inter-related factors that are crucial in producing an efficient fire detection system: the strategic placement and networking of lookout towers, the knowledge of the fire detection radius for lookout observers at a given location and the ability to produce visibility maps. This study proposes a new methodology in the field of forest fire management, using the widely accepted Fire Detection Function Model to evaluate the effect of distance and other variables on the probability that an object is detected by an observer. In spite of the known variability, the model seems robust when applied to a wide variety of situations, and the results obtained for the effective detection radius (13.4 km for poor conditions and 20.6 km for good conditions) are in general agreement with those proposed by other authors. We encourage the application of the new approach in the evaluation or planning of lookout networks, in addition to other integrated systems used in fire detection.


Author(s):  
Jaw-Juinn Horng ◽  
Szu-Lin Liu ◽  
Amit Kundu ◽  
Chin-Ho Chang ◽  
Chung-Hui Chen ◽  
...  

2021 ◽  
Author(s):  
Soumen Dey ◽  
Richard Bischof ◽  
Pierre P. A. Dupont ◽  
Cyril Milleret

AbstractSpatial capture-recapture (SCR) is now used widely to estimate wildlife densities. At the core of SCR models lies the detection function, linking individual detection probability to the distance from its latent activity center. The most common function (half-normal) assumes a bivariate normal space use and consequently detection pattern. This is likely an oversimplification and misrepresentation of real-life animal space use patterns, but studies have reported that density estimates are relatively robust to misspecified detection functions. However, information about consequences of such misspecification on space use parameters (e.g. home range area), as well as diagnostic tools to reveal it are lacking.We simulated SCR data under six different detection functions, including the half-normal, to represent a wide range of space use patterns. We then fit three different SCR models, with the three simplest detection functions (half-normal, exponential and half-normal plateau) to each simulated data set. We evaluated the consequences of misspecification in terms of bias, precision and coverage probability of density and home range area estimates. We also calculated Bayesian p-values with respect to different discrepancy metrics to assess whether these can help identify misspecifications of the detection function.We corroborate previous findings that density estimates are robust to misspecifications of the detection function. However, estimates of home range area are prone to bias when the detection function is misspecified. When fitted with the half-normal model, average relative bias of 95% kernel home range area estimates ranged between −25% and 26% depending on the misspecification. In contrast, the half-normal plateau model (an extension of the half-normal) returned average relative bias that ranged between −26% and −4%. Additionally, we found useful heuristic patterns in Bayesian p-values to diagnose the misspecification in detection function.Our analytical framework and diagnostic tools may help users select a detection function when analyzing empirical data, especially when space use parameters (such as home range area) are of interest. We urge development of additional custom goodness of fit diagnostics for Bayesian SCR models to help practitioners identify a wider range of model misspecifications.


2020 ◽  
pp. 1-7
Author(s):  
Noryanti Muhammad ◽  
Gamil A.A. Saeed ◽  
Wan Nur Syahidah Wan Yusoff

One of the most important sides of life is wildlife. There is growing research interest in monitoring wildlife. Line transect sampling is one of the techniques widely used for estimating the density of objects especially for animals and plants. In this research, a parametric estimator for estimation of the population abundance is developed. A new parametric model for perpendicular distances for detection function is utilised to develop the estimator. In this paper, the performance of the parametric model which was developed using a simulation study is presented. The detection function has non-increasing curve and a perfect probability at zero. Theoretically, the parametric model which has been developed is guar-anteed to satisfy the shoulder condition assumption. A simulation study is presented to validate the present model. Relative mean error (RME) and Relative Bias (RB) are used to compare the estimator with well-known existing estimators. The results of the simulation study are discussed, and the performance of the proposed model shows promising statistical properties which outperformed the existing models. Keywords: detection function, line transect data, parametric model


2017 ◽  
Author(s):  
Noemi Di Nanni ◽  
Matteo Gnocchi ◽  
Marco Moscatelli ◽  
Luciano Milanesi ◽  
Ettore Mosca

Network Diffusion has been proposed in several applications, thanks to its ability of amplifying biological signals and prioritizing genes that may be associated with a disease. Not surprising, the success of Network Diffusion on a “single layer” led to the first approaches for the joint analysis of multi-omics data. Here, we review integrative methods based on Network Diffusion that have been proposed with several aims (e.g. patient stratification, module detection, function prediction). We used Network Diffusion to analyse, in the context of physical and functional protein-protein interactions, genetic variation, DNA methylation and gene expression data from a study on Rheumatoid Arthritis. We identified functionally related genes with multiple alterations.


Sign in / Sign up

Export Citation Format

Share Document