Broadband and polarization-independent asymmetric transmission of visible light through a three-dimensional trapezoidal metallic metasurface

2018 ◽  
Vol 35 (9) ◽  
pp. 2111 ◽  
Author(s):  
Ahmet Ozer ◽  
Hasan Kocer ◽  
Hamza Kurt
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2354
Author(s):  
Jimmy Jiun-Ming Su ◽  
Chih-Hsin Lin ◽  
Hsuan Chen ◽  
Shyh-Yuan Lee ◽  
Yuan-Min Lin

Gelatin methacryloyl (GelMA) hydrogel is a photopolymerizable biomaterial widely used for three-dimensional (3D) cell culture due to its high biocompatibility. However, the drawback of GelMA hydrogel is its poor mechanical properties, which may compromise the feasibility of biofabrication techniques. In this study, a cell-laden GelMA composite hydrogel with a combination incorporating silanized hydroxyapatite (Si-HAp) and a simple and harmless visible light crosslinking system for this hydrogel were developed. The incorporation of Si-HAp into the GelMA hydrogel enhanced the mechanical properties of the composite hydrogel. Moreover, the composite hydrogel exhibited low cytotoxicity and promoted the osteogenic gene expression of embedded MG63 cells and Human bone marrow mesenchymal stem cells (hBMSCs). We also established a maskless lithographic method to fabricate a defined 3D structure under visible light by using a digital light processing projector, and the incorporation of Si-HAp increased the resolution of photolithographic hydrogels. The GelMA-Si-HAp composite hydrogel system can serve as an effective biomaterial in bone regeneration.


2016 ◽  
Vol 69 (1) ◽  
pp. 119 ◽  
Author(s):  
Li Lin ◽  
Ya Wang ◽  
Manhong Huang ◽  
Donghui Chen

Three-dimensional (3D) BiOBr/BiOI hierarchical microspheres were successfully fabricated on the surface of fly ash cenospheres (FACs) via a facile one-pot solvothermal method for the first time. The as-prepared samples were characterized by XRD, SEM, energy-dispersive X-ray spectroscopy, UV–visible diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy. The results indicated that the loaded hierarchical microspheres exhibited a uniform distribution, and some aggregation was observed. These well-dispersed hierarchical microspheres were composed of 2D nanosheets, which possess heterojunction structures. Based on the photodegradation tests examining the removal of rhodamine B from water under visible light irradiation (λ > 420 nm), the photocatalytic activity of BiOB/BiOI/FACs was superior to that of BiOBr/FACs and BiOI/FACs. A proposed mechanism for the enhanced photocatalytic activity displayed by BiOB/BiOI/FACs is discussed.


2016 ◽  
Vol 18 (23) ◽  
pp. 15972-15979 ◽  
Author(s):  
Thuy-Duong Nguyen-Phan ◽  
Si Luo ◽  
Dimitriy Vovchok ◽  
Jordi Llorca ◽  
Shawn Sallis ◽  
...  

Ru-doped rutile TiO2 composed of radially aligned nanorods exhibits good H2 production from water under visible light irradiation.


2014 ◽  
Vol 40 (8) ◽  
pp. 11493-11501 ◽  
Author(s):  
Li Lin ◽  
Manhong Huang ◽  
Liping Long ◽  
Zhe Sun ◽  
Wei Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document