Ellipsometric method of measuring the parameters of a ferromagnetic substance

1999 ◽  
Vol 66 (5) ◽  
pp. 442 ◽  
Author(s):  
O. B. Bakradze

The object of this paper is to amend, in an important particular, the theory of ferromagnetic induction put forward by me more than 30 years ago, and to describe a new model. That theory was itself a modification of the earlier theory of Weber. To Weber is due the fundamental notion that a substance contains minute particles, each of which acts as a magnet, and that in the process of magnetising a ferromagnetic substance these are turned into more or less complete alignment. The ultimate magnetic particles use to be called “molecular magnets”: we now recognise them as attributes of the atom, not of the molecule, and (in all probability) they derive their magnetic moment from the circulation of electricity in electron orbits or in ring electrons. What turns is not the molecule nor the atom, but something within the atom. The characteristics which distinguish ferromagnetic substances from other paramagnetics are: (1) the much larger amount of magnetism they can acquire under the action of an impressed field; (2) the fact that the acquired magnetism tends towards a saturation limit when the field is progressively increased; (3) the fact that the acquired magnetism shows hysteresis with respect to variations of the field, except in certain small initial changes. Weber’s theory explained (1) and (2). My modification of it explained, in addition, (3) as an effect of the irreversible action which occurs when the equilibrium of a magnetic element becomes unstable through change in the externally impressed magnetic force, and it swings over, with dissipation of energy, into a new position of stability. The stability in both positions is sufficiently explained by magnetic forces only. In breaking away from one stable position it is deflected at first in a quasi­-elastic (reversible) manner until the external force reaches a certain value at which the equilibrium is upset. The essence of hysteresis is the turning from one position of stability to another, through a region of instability. If the conditions are such that there is no unstable phase in the turning, then there is no dissipation of energy, and consequently no hysteresis. This occurs in very feeble magnetisation, when the deflections are reversible; it also occurs if the piece be caused to rotate in a field of great strength. J. Swinburne pointed out that, as a consequence of my theory, hysteresis should vanish when a cylinder of ferromagnetic metal is rotated in a very strong field, and this curious result was confirmed experimentally by F. G. Baily.


2013 ◽  
Vol 538 ◽  
pp. 113-116 ◽  
Author(s):  
S.N. Svitasheva

Optical properties of thin films of vanadium thermally oxidized at air were studied by ellipsometric method using wavelength of He-Ne laser. Multipart composition of these films was revealed and method of optimization of technological conditions based on dynamic of changing optical constants near 68°C was developed.


Author(s):  
A. J. Wakefield

Experimentally it is found for a ferromagnetic substance that the spontaneous magnetization decreases as the temperature increases. At a certain temperature called the Curie point, the magnetization disappears (or substantially disappears) and remains zero for higher temperatures. Associated with these magnetic properties is an anomaly in the specific heat. This quantity is greater than that which would be calculated theoretically for the material were it non-magnetic and becomes large when the temperature approaches the Curie point from below. Just above the Curie point there is a sharp but continuous decrease in the specific heat and the system is said to show critical behaviour. We shall examine the Ising model of the ferromagnet with a simple cubic lattice structure, determine the specific heat anomaly and the corresponding energy excess due to magnetism, and also see how the critical behaviour of the model compares with that actually observed.


The accurate experiments of Chattock and Bates prove that the angular momentum arising in a ferromagnetic substance from unit change in its magnetic moment is very nearly, if not exactly, one half the value 2 m/e = 1.13 X 10 -7 , which seemed to me the most likely when I first discussed this effect. This conclusion is supported by the fact that the improvements which have been introduced into this subject by successive experimenters in recent years have led to values showing a strong tendency to settle at the same limit m/e = 5.65 X 10 -8 . This value is also in general agreement with that deduced by Barnett from experiments on the converse effect. It seems desirable therefore to reconsider the interpretation of this ratio. The higher value 2 m/e is obtained by making rather definite assumptions, which evidently require modification, as to the nature of the phenomena. These assumptions are that the process of magnetization involves the turning of electron orbits, and that nothing else which may occur has any important influence on the phenomena. The inertia of the electrons is assumed to be entirely of the type which controls the deflection of a beam of cathode rays by a magnetic field, and any change in the motion of the positively charged part of the atom is disregarded. These assumptions are essentially the same as those of the theories of Langevin and Weiss which have been successful in dealing with purely magnetic phenomena.


1998 ◽  
Vol 23 (18) ◽  
pp. 1429 ◽  
Author(s):  
Hong-Ki Kim ◽  
Myoungsik Cha

2019 ◽  
Vol 34 (17) ◽  
pp. 1950129
Author(s):  
R. Basak ◽  
V. I. Tsifrinovich

In this paper, we compute the spin excess for the neutrinos radiated in the process of electron capture beta decay of partially polarized nuclei. The results of computation are presented for the [Formula: see text] nuclei polarized by the strong hyperfine field in a ferromagnetic substance. This system was suggested as a possible source of monoenergetic neutrino radiation with a preferable direction of neutrino propagation. We directly compute the spin excess of radiated neutrinos and show that it is slightly greater than that estimated previously under simplifying assumptions.


Sign in / Sign up

Export Citation Format

Share Document