Use of the VIPS package for visualization of the ferromagnetic substance magnetic domains' image analysis

1997 ◽  
Author(s):  
Krzysztof Burakiewicz
Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Author(s):  
H.P. Rohr

Today, in image analysis the broadest possible rationalization and economization have become desirable. Basically, there are two approaches for image analysis: The image analysis through the so-called scanning methods which are usually performed without the human eye and the systems of optical semiautomatic analysis completely relying on the human eye.The new MOP AM 01 opto-manual system (fig.) represents one of the very promising approaches in this field. The instrument consists of an electronic counting and storing unit, which incorporates a microprocessor and a keyboard for choice of measuring parameters, well designed for easy use.Using the MOP AM 01 there are three possibilities of image analysis:the manual point counting,the opto-manual point counting andthe measurement of absolute areas and/or length (size distribution analysis included).To determine a point density for the calculation of the corresponding volume density the intercepts lying within the structure are scanned with the light pen.


Author(s):  
S. Nakahara ◽  
D. M. Maher

Since Head first demonstrated the advantages of computer displayed theoretical intensities from defective crystals, computer display techniques have become important in image analysis. However the computational methods employed resort largely to numerical integration of the dynamical equations of electron diffraction. As a consequence, the interpretation of the results in terms of the defect displacement field and diffracting variables is difficult to follow in detail. In contrast to this type of computational approach which is based on a plane-wave expansion of the excited waves within the crystal (i.e. Darwin representation ), Wilkens assumed scattering of modified Bloch waves by an imperfect crystal. For localized defects, the wave amplitudes can be described analytically and this formulation has been used successfully to predict the black-white symmetry of images arising from small dislocation loops.


Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Author(s):  
Yalcin Belli

Fe-Cr-Co alloys have great technological potential to replace Alnico alloys as hard magnets. The relationship between the microstructures and the magnetic properties has been recently established for some of these alloys. The magnetic hardening has been attributed to the decomposition of the high temperature stable phase (α) into an elongated Fe-rich ferromagnetic phase (α1) and a weakly magnetic or non-magnetic Cr-rich phase (α2). The relationships between magnetic domains and domain walls and these different phases are yet to be understood. The TEM has been used to ascertain the mechanism of magnetic hardening for the first time in these alloys. The present paper describes the magnetic domain structure and the magnetization reversal processes in some of these multiphase materials. Microstructures to change properties resulting from, (i) isothermal aging, (ii) thermomagnetic treatment (TMT) and (iii) TMT + stepaging have been chosen for this investigation. The Jem-7A and Philips EM-301 transmission electron microscopes operating at 100 kV have been used for the Lorentz microscopy study of the magnetic domains and their interactions with the finely dispersed precipitate phases.


Author(s):  
K. Shi rota ◽  
A. Yonezawa ◽  
K. Shibatomi ◽  
T. Yanaka

As is well known, it is not so easy to operate a conventional transmission electron microscope for observation of magnetic materials. The reason is that the instrument requires re-alignment of the axis and re-correction of astigmatism after each specimen shift, as the lens field is greatly disturbed by the specimen. With a conventional electron microscope, furthermore, it is impossible to observe magnetic domains, because the specimen is magnetized to single orientation by the lens field. The above mentioned facts are due to the specimen usually being in the lens field. Thus, special techniques or systems are usually required for magnetic material observation (especially magnetic domain observation), for example, the technique to switch off the objective lens current and Lorentz microscopy. But these cannot give high image quality and wide magnification range, and furthermore Lorentz microscopy is very complicated.


Author(s):  
N. Qiu ◽  
J. E. Wittig

PtCo hard magnets have specialized applications owing to their relatively high coercivity combined with corrosion resistance and ductility. Increased intrinsic coercivity has been recently obtained by rapid solidification processing of PtCo alloys containing boron. After rapid solidification by double anvil splat quenching and subsequent annealing for 30 minutes at 650°C, an alloy with composition Pt42Co45B13 (at.%) exhibited intrinsic coercivity up to 14kOe. This represents a significant improvement compared to the average coercivities in conventional binary PtCo alloys of 5 to 8 kOe.Rapidly solidified specimens of Pt42Co45B13 (at.%) were annealed at 650°C and 800°C for 30 minutes. The magnetic behavior was characterized by measuring the coercive force (Hc). Samples for TEM analysis were mechanically thinned to 100 μm, dimpled to about 30 nm, and ion milled to electron transparency in a Gatan Duomill at 5 kV and 1 mA gun current. The incident ion beam angle was set at 15° and the samples were liquid nitrogen cooled during milling. These samples were analyzed with a Philips CM20T TEM/STEM operated at 200 kV.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


Author(s):  
K. Tsuno ◽  
Y. Harada ◽  
T. Sato

Magnetic domains of ferromagnetic amorphous ribbon have been observed using Bitter powder method. However, the domains of amorphous ribbon are very complicated and the surface of ribbon is not flat, so that clear domain image has not been obtained. It has been desired to observe more clear image in order to analyze the domain structure of this zero magnetocrystalline anisotropy material. So, we tried to observe magnetic domains by means of a back-scattered electron mode of high voltage scanning electron microscope (HVSEM).HVSEM method has several advantages compared with the ordinary methods for observing domains: (1) high contrast (0.9, 1.5 and 5% at 50, 100 and 200 kV) (2) high penetration depth of electrons (0.2, 1.5 and 8 μm at 50, 100 and 200 kV). However, image resolution of previous HVSEM was quite low (maximum magnification was less than 100x), because the objective lens cannot be excited for avoiding the application of magnetic field on the specimen.


Sign in / Sign up

Export Citation Format

Share Document