scholarly journals Manipulating entanglement sudden death in two coupled two-level atoms interacting off-resonance with a radiation field: an exact treatment

2019 ◽  
Vol 27 (23) ◽  
pp. 33799 ◽  
Author(s):  
Gehad Sadiek ◽  
Wiam Al-Drees ◽  
M. Sebaweh Abdallah
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 629
Author(s):  
Gehad Sadiek ◽  
Wiam Al-Dress ◽  
Salwa Shaglel ◽  
Hala Elhag

We investigate the time evolution and asymptotic behavior of a system of two two-level atoms (qubits) interacting off-resonance with a single mode radiation field. The two atoms are coupled to each other through dipole--dipole as well as Ising interactions. An exact analytic solution for the system dynamics that spans the entire phase space is provided. We focus on initial states that cause the system to evolve to entanglement sudden death (ESD) between the two atoms. We find that combining the Ising and dipole--dipole interactions is very powerful in controlling the entanglement dynamics and ESD compared with either one of them separately. Their effects on eliminating ESD may add up constructively or destructively depending on the type of Ising interaction (Ferromagnetic or anti-Ferromagnetic), the detuning parameter value, and the initial state of the system. The asymptotic behavior of the ESD is found to depend substantially on the initial state of the system, where ESD can be entirely eliminated by tuning the system parameters except in the case of an initial correlated Bell state. Interestingly, the entanglement, atomic population and quantum correlation between the two atoms and the field synchronize and reach asymptotically quasi-steady dynamic states. Each one of them ends up as a continuous irregular oscillation, where the collapse periods vanish, with a limited amplitude and an approximately constant mean value that depend on the initial state and the system parameters choice. This indicates an asymptotic continuous exchange of energy (and strong quantum correlation) between the atoms and the field takes place, accompanied by diminished ESD for these chosen setups of the system. This system can be realized in spin states of quantum dots or Rydberg atoms in optical cavities, and superconducting or hybrid qubits in linear resonators.


2008 ◽  
Vol 19 (05) ◽  
pp. 775-783
Author(s):  
XIUWU WANG ◽  
XIAOHONG ZHANG

In this paper, we study the quantum entanglement of three two-level atoms under the action of Fock state of a single-mode quantized radiation field. Milburn model is considered. Concurrence of the two atoms is given explicitly. As is expected, because of the intrinsic decoherence, Concurrence comes to a stationary value. A rule is summarized between this value and entanglement sudden death. As for the potential measurement of multi-particle entanglement, spin squeezing parameter is calculated.


2017 ◽  
Vol 34 (3) ◽  
pp. 681 ◽  
Author(s):  
Ashutosh Singh ◽  
Siva Pradyumna ◽  
A. R. P. Rau ◽  
Urbasi Sinha

2015 ◽  
Vol 15 (3) ◽  
pp. 1117-1133
Author(s):  
Gregg Jaeger ◽  
David Simon ◽  
Alexander V. Sergienko

2009 ◽  
Vol 42 (19) ◽  
pp. 195507 ◽  
Author(s):  
W B Cardoso ◽  
A T Avelar ◽  
B Baseia ◽  
N G de Almeida

2016 ◽  
Vol 94 (1) ◽  
Author(s):  
Laura T. Knoll ◽  
Christian T. Schmiegelow ◽  
Osvaldo Jiménez Farías ◽  
Stephen P. Walborn ◽  
Miguel A. Larotonda

2010 ◽  
Vol 08 (05) ◽  
pp. 755-763
Author(s):  
G. W. FORD ◽  
R. F. O'CONNELL

We consider the case of a pair of particles initially in a superposition state corresponding to a separated pair of wave packets. In contrast to a previous related work, we avoid a master equation approach and we calculate exactly the time development of this non-Gaussian state due to interaction with an arbitrary heat bath. We find that coherence decays continuously, as expected. We then investigate entanglement and find that at a finite time the system becomes separable (not entangled). Thus, we see that entanglement sudden death is also prevalent in continuous variable systems which should raise concern for the designers of entangled systems.


2011 ◽  
Vol 10 (5) ◽  
pp. 705-715 ◽  
Author(s):  
Taotao Hu ◽  
Hang Ren ◽  
Kang Xue

2010 ◽  
Vol 24 (26) ◽  
pp. 2635-2645
Author(s):  
CHUAN-JIA SHAN ◽  
TAO CHEN ◽  
JI-BING LIU ◽  
WEI-WEN CHENG ◽  
TANG-KUN LIU ◽  
...  

By analytically solving the Lindblad form of the master equation, we investigate entanglement dynamics of two qubits coupled via the XY interaction, where each qubit is interacting with an independent reservoir with the squeezing parameters and squeezing angles. In the weak-squeezed reservoir, we show that the entanglement sudden death and entanglement sudden birth will happen for various entangled states. Some initial product states evolve into entangled ones, initially entangled states lose completely or partially their entanglement. The effects of varying the degree of entanglement of the initial states, the spin chain system parameters and different values of the degree of squeezing on the sudden death, revival and birth times are analyzed in detail. We also see that the steady state concurrence appears in the squeezed dissipative environments, which is affected by both the system parameters and the degree of squeezing.


Sign in / Sign up

Export Citation Format

Share Document