scholarly journals Grating deployed total-shear 3-beam interference microscopy with reduced temporal coherence

2020 ◽  
Vol 28 (5) ◽  
pp. 6893
Author(s):  
Krzysztof Patorski ◽  
Piotr Zdańkowski ◽  
Maciej Trusiak
Author(s):  
R. I. Johnsson-Hegyeli ◽  
A. F. Hegyeli ◽  
D. K. Landstrom ◽  
W. C. Lane

Last year we reported on the use of reflected light interference microscopy (RLIM) for the direct color photography of the surfaces of living normal and malignant cell cultures without the use of replicas, fixatives, or stains. The surface topography of living cells was found to follow underlying cellular structures such as nuceloli, nuclear membranes, and cytoplasmic organelles, making possible the study of their three-dimensional relationships in time. The technique makes possible the direct examination of cells grown on opaque as well as transparent surfaces. The successful in situ electron microprobe analysis of the elemental composition and distribution within single tissue culture cells was also reported.This paper deals with the parallel and combined use of scanning electron microscopy (SEM) and the two previous techniques in a study of living and fixed cancer cells. All three studies can be carried out consecutively on the same experimental specimens without disturbing the cells or their structural relationships to each other and the surface on which they are grown. KB carcinoma cells were grown on glass coverslips in closed Leighto tubes as previously described. The cultures were photographed alive by means of RLIM, then fixed with a fixative modified from Sabatini, et al (1963).


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


Author(s):  
Bruno and

Within the traditional notion of the senses, the perception of time is especially puzzling. There is no specific physical energy carrying information about time, and hence no sensory receptors can transduce a ‘temporal stimulus.’ Time-related properties of events can instead be shown to emerge from specific perceptual processes involving multisensory interactions. In this chapter, we will examine five such properties: the awareness that two events occur at the same time (simultaneity) or one after the other (succession); the coherent time-stamping of events despite inaccuracies and imprecisions in coding simultaneity and succession (temporal coherence); the awareness of the temporal extent occupied by events (duration); the organization of events in regular temporal units (rhythm).


Author(s):  
Zhi Qiao ◽  
Takashi Kanai

AbstractWe introduce an unsupervised GAN-based model for shading photorealistic hair animations. Our model is much faster than previous rendering algorithms and produces fewer artifacts than other neural image translation methods. The main idea is to extend the Cycle-GAN structure to avoid semitransparent hair appearance and to exactly reproduce the interaction of the lights with the scene. We use two constraints to ensure temporal coherence and highlight stability. Our approach outperforms and is computationally more efficient than previous methods.


Sign in / Sign up

Export Citation Format

Share Document