scholarly journals Four-function metasurface based on tri-band integrated meta-atom for full space controls of circularly polarized waves

2021 ◽  
Author(s):  
Zhibiao Zhu ◽  
Yang Cheng ◽  
Yongfeng li ◽  
Jiafu Wang ◽  
Shaobo Qu
1971 ◽  
Vol 5 (1) ◽  
pp. 107-113 ◽  
Author(s):  
C. S. Chen

An infinite, inhomogeneous electron plasma driven by a spatially uniform oscillating electric field is investigated. The multi-time perturbation method is used to analyze possible parametric excitations of transverse waves and to evaluate their growth rates. It is shown that there exist subharmonic excitations of: (1) a pair of transverse waves in an unmagnetized plasma and (2) a pair of one right and one left circularly polarized wave in a magnetoplasma. Additionally, parametric excitation of two right or two left circularly polarized waves with different frequencies can exist in a magnetoplasma. The subharmonic excitations are impossible whenever the density gradient and the applied electric field are perpendicular. However, parametric excitation is possible with all configurations.


1973 ◽  
Vol 51 (23) ◽  
pp. 2495-2497
Author(s):  
C. K. Campbell

With the aid of a phasor diagram it is shown that the scalar effective permeability μe = (μ2 − K2)/μ of a parallel-plate longitudinally magnetized microwave ferrite phase shifter may be simply obtained in terms of four circularly polarized waves relating to the permeability tensor eigenvalues μ + K and μ − K.


2014 ◽  
Vol 56 (5) ◽  
Author(s):  
Wang Shun ◽  
Chen Ziwei ◽  
Zhang Feng ◽  
Gong Zhaoqian ◽  
Li Jutao ◽  
...  

<p><strong><em></em></strong>Separation for O wave and X wave is a very important job in interpretation of ionograms, which is premise for automatic scaling. In this paper, a new digital method for separating O wave and X wave is presented, based on a numerical synthesizing technique, which is different from using image recognition to separate trace O and trace X in the ionograms, and from using the electrical method to synthesize and detect circularly polarized waves. By replacing analog phase shifters and switches in existing ionosonde with digital phase shifters with different initial phase, 0°, +90°, −90°, circularly polarized waves are synthesized digitally within the range of 1-30 MHz, which eliminates the nonlinearity and expands the bandwidth of the ionosonde, and there is no need to switch the analog switches continuously. The new method has been successfully applied to CAS-DIS ionosonde and testing results show that the new digital method is capable of separating O wave and X wave well.</p>


2011 ◽  
Vol 19 (3) ◽  
Author(s):  
C. Zenkova ◽  
M. Gorsky ◽  
N. Gorodynska

AbstractThe use of the method of field polarization modulation for defining the degree of coherence of circularly polarized waves is offered. The role of the reference circularly polarized wave in transforming the spatial distribution of polarization into the depth of visibility modulation of the resulting distribution, which can be metrologically estimated and analyzed, is demonstrated.


Author(s):  
Robert E. Newnham

When plane-polarized light enters a crystal it divides into right- and lefthanded circularly polarized waves. If the crystal possesses handedness, the two waves travel with different speeds, and are soon out of phase. On leaving the crystal, the circularly polarized waves recombine to form a plane polarized wave, but with the plane of polarization rotated through an angle αt. The crystal thickness t is in mm, and α is the optical activity coefficient expressed in degrees/mm. The polarization vector of the combined wave can be visualized as a helix, turning α ◦/mm path length in the optically-active medium. Because of the low symmetry of a helix, optical activity is not observed in many high symmetry crystals. Point groups possessing a center of symmetry are inactive. In relating α to crystal chemistry it is convenient to divide optically-active materials into two categories: Those which retain optical activity in liquid form, and those which do not. It has long been known that optically-active solutions crystallize to give optically-active solids. This follows from the fact that molecules lacking mirror or inversion symmetry can never crystallize in a pattern containing such symmetry elements. Thus one way of obtaining optically-active materials is to begin with optically-active molecules, as in Rochelle salt, tartaric acid and cane sugar. Few of these crystals are very stable, however, and the optical activity coefficients are usually small, typically 2◦/mm. The same is true of many inorganic solids, though they are seldom optically active in the liquid state. For NaClO3 and MgSO4·7H2O, α is about 3◦/mm. Quartz and selenium, however, have coefficients an order of magnitude larger, showing the importance of helical structures to optical activity. Both compounds crystallize as right- and left-handed forms in space groups P312 and P322, with helices spiraling around the trigonal screw axes. Quartz contains nearly regular SiO4 tetrahedra with Si–O distances of 1.61 Å. Levorotatory quartz belongs to space group P312 and contains right-handed helices; enantiomorphic dextrorotatory quartz crystallizes in P322. Trigonal selenium also contains helical chains.


2020 ◽  
Vol 74 (5) ◽  
Author(s):  
Tajammal H. Khokhar ◽  
Imran A. Khan ◽  
Hassan A. Shah ◽  
Ghulam Murtaza

2019 ◽  
Vol 11 (10) ◽  
pp. 1054-1060
Author(s):  
Kapil Saraswat ◽  
A. R. Harish

AbstractA polarization and band reconfigurable cross-slot antenna for multiband applications is presented in this paper. The antenna consists of four p–i–n diodes embedded in the cross-shaped slot in a ground plane and excited by a microstrip feed line. The p–i–n diodes are placed in such a way that they produce multiple bands, with linearly and circularly polarized (CP) radiation. By switching the states of the p–i–n diodes, the sense of rotation of the electric field in CP radiation can be reconfigured. The proposed structure can be configured to produce two bands that radiate linearly polarized waves or three bands, where, two are linearly polarized and one is CP. The proposed design concepts are validated bythe CST studio suite as well as measurementsare carried out on fabricated prototypes.


Sign in / Sign up

Export Citation Format

Share Document