scholarly journals Skylight polarization patterns under urban obscurations and a navigation method adapted to urban environments

2021 ◽  
Author(s):  
Qianhui Li ◽  
Yao Hu ◽  
Qun Hao ◽  
jie CAO ◽  
Yang Cheng ◽  
...  
Author(s):  
Dénes Száz ◽  
Alexandra Farkas ◽  
András Barta ◽  
Balázs Kretzer ◽  
Miklós Blahó ◽  
...  

According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤  θ  ≤ 40°, 1 okta ≤  ρ  ≤ 6 oktas for summer solstice, and at 20° ≤  θ  ≤ 25°, 0 okta ≤  ρ  ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ , the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ , this absolute value can either decrease or increase with increasing ρ . The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤  θ  ≤ 40° and 2 oktas ≤  ρ  ≤ 3 oktas.


2021 ◽  
Vol 111 ◽  
pp. 104810
Author(s):  
Jie Zhang ◽  
Jian Yang ◽  
Shanpeng Wang ◽  
Xin Liu ◽  
Yan Wang ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5563
Author(s):  
Hailong Huang ◽  
Andrey V. Savkin

In this paper, we consider the navigation of a group of solar-powered unmanned aerial vehicles (UAVs) for periodical monitoring of a set of mobile ground targets in urban environments. We consider the scenario where the number of targets is larger than that of the UAVs, and the targets spread in the environment, so that the UAVs need to carry out a periodical surveillance. The existence of tall buildings in urban environments brings new challenges to the periodical surveillance mission. They may not only block the Line-of-Sight (LoS) between a UAV and a target, but also create some shadow region, so that the surveillance may become invalid, and the UAV may not be able to harvest energy from the sun. The periodical surveillance problem is formulated as an optimization problem to minimize the target revisit time while accounting for the impact of the urban environment. A nearest neighbour based navigation method is proposed to guide the movements of the UAVs. Moreover, we adopt a partitioning scheme to group targets for the purpose of narrowing UAVs’ moving space, which further reduces the target revisit time. The effectiveness of the proposed method is verified via computer simulations.


2014 ◽  
Author(s):  
Chrono Nu ◽  
Katie Mullin ◽  
Hailey Edwards ◽  
Kailey Kornhauser ◽  
Russell Costa ◽  
...  

TERRITORIO ◽  
2020 ◽  
pp. 148-163
Author(s):  
Luca Fondacci

In the 1970s, the fragile historical centre of the city of Perugia was a key area where the binomial of sustainable mobility and urban regeneration was developed and applied. At the turn of the xxi century, the low carbon automatic people-mover Minimetrò broadened that application from the city's historical centre to the outskirts, promoting the enhancement of several urban environments. This paper is the outcome of an investigation of original sources, field surveys and direct interviews, which addresses the Minimetrò as the backbone of a wide regeneration process which has had a considerable impact on the economic development of a peripheral area of the city which was previously devoid of any clear urban sense. The conclusion proposes some solutions to improve the nature of the Minimetrò as an experimental alternative means of transport.


Sign in / Sign up

Export Citation Format

Share Document