scholarly journals Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

Author(s):  
Dénes Száz ◽  
Alexandra Farkas ◽  
András Barta ◽  
Balázs Kretzer ◽  
Miklós Blahó ◽  
...  

According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤  θ  ≤ 40°, 1 okta ≤  ρ  ≤ 6 oktas for summer solstice, and at 20° ≤  θ  ≤ 25°, 0 okta ≤  ρ  ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy skies, the sky-polarimetric navigation is more accurate, but at low solar elevations its accuracy remains relatively large even at high cloudiness. For a given ρ , the absolute value of averaged peak North uncertainties dramatically decreases with increasing θ until the sign (±) change of these uncertainties. For a given θ , this absolute value can either decrease or increase with increasing ρ . The most advantageous sky situations for this navigation method are at summer solstice when the solar elevation and cloudiness are 35° ≤  θ  ≤ 40° and 2 oktas ≤  ρ  ≤ 3 oktas.

Author(s):  
Dénes Száz ◽  
Alexandra Farkas ◽  
András Barta ◽  
Balázs Kretzer ◽  
Ádám Egri ◽  
...  

The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors Δ ω N was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal Δ ω N was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.


2018 ◽  
Vol 5 (4) ◽  
pp. 172187 ◽  
Author(s):  
Dénes Száz ◽  
Gábor Horváth

According to a famous hypothesis, Viking sailors could navigate along the latitude between Norway and Greenland by means of sky polarization in cloudy weather using a sun compass and sunstone crystals. Using data measured in earlier atmospheric optical and psychophysical experiments, here we determine the success rate of this sky-polarimetric Viking navigation. Simulating 1000 voyages between Norway and Greenland with varying cloudiness at summer solstice and spring equinox, we revealed the chance with which Viking sailors could reach Greenland under the varying weather conditions of a 3-week-long journey as a function of the navigation periodicity Δ t if they analysed sky polarization with calcite, cordierite or tourmaline sunstones. Examples of voyage routes are also presented. Our results show that the sky-polarimetric navigation is surprisingly successful on both days of the spring equinox and summer solstice even under cloudy conditions if the navigator determined the north direction periodically at least once in every 3 h, independently of the type of sunstone used for the analysis of sky polarization. This explains why the Vikings could rule the Atlantic Ocean for 300 years and could reach North America without a magnetic compass. Our findings suggest that it is not only the navigation periodicity in itself that is important for higher navigation success rates, but also the distribution of times when the navigation procedure carried out is as symmetrical as possible with respect to the time point of real noon.


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2609-2621
Author(s):  
M.A. Latif ◽  
S.S. Dragomir

In this paper, a new identity for n-times differntiable functions is established and by using the obtained identity, some new inequalities Hermite-Hadamard type are obtained for functions whose nth derivatives in absolute value are convex and concave functions. From our results, several inequalities of Hermite-Hadamard type can be derived in terms of functions whose first and second derivatives in absolute value are convex and concave functions as special cases. Our results may provide refinements of some results already exist in literature. Applications to trapezoidal formula and special means of established results are given.


2015 ◽  
Vol 45 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Paulo Maurício Lima de Alencastro GRAÇA ◽  
Francisco Dario MALDONADO ◽  
João Roberto dos SANTOS ◽  
Edwin Willem Hermanus KEIZER

Radiometric changes observed in multi-temporal optical satellite images have an important role in efforts to characterize selective-logging areas. The aim of this study was to analyze the multi-temporal behavior of spectral-mixture responses in satellite images in simulated selective-logging areas in the Amazon forest, considering red/near-infrared spectral relationships. Forest edges were used to infer the selective-logging infrastructure using differently oriented edges in the transition between forest and deforested areas in satellite images. TM/Landsat-5 images acquired at three dates with different solar-illumination geometries were used in this analysis. The method assumed that the radiometric responses between forest with selective-logging effects and forest edges in contact with recent clear-cuts are related. The spatial frequency attributes of red/near infrared bands for edge areas were analyzed. Analysis of dispersion diagrams showed two groups of pixels that represent selective-logging areas. The attributes for size and radiometric distance representing these two groups were related to solar-elevation angle. The results suggest that detection of timber exploitation areas is limited because of the complexity of the selective-logging radiometric response. Thus, the accuracy of detecting selective logging can be influenced by the solar-elevation angle at the time of image acquisition. We conclude that images with lower solar-elevation angles are less reliable for delineation of selecting logging.


2021 ◽  
Vol 111 ◽  
pp. 104810
Author(s):  
Jie Zhang ◽  
Jian Yang ◽  
Shanpeng Wang ◽  
Xin Liu ◽  
Yan Wang ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 2423 ◽  
Author(s):  
Long Tang ◽  
Wu Chen ◽  
Osei-Poku Louis ◽  
Mingli Chen

In this study, the characteristics and causes of the seasonal variations in plasma bubble occurrence over the Hong Kong area were investigated using the local Global Navigation Satellite System (GNSS) network. Generally, the occurrences of plasma bubbles were larger in the two equinoxes than in the two solstices. Furthermore, two seasonal asymmetries in plasma bubble occurrence were observed: plasma bubble activity was more frequent in the spring equinox than in the autumn equinox (equinoctial asymmetry), and more frequent in the summer solstice than in the winter solstice (solstitial asymmetry). The equinoctial asymmetry could be explained using the Rayleigh–Taylor (R–T) instability mechanism, due to larger R–T growth rates in the spring equinox than in the autumn equinox. However, the R–T growth rate was smaller in the summer solstice than in the winter solstice, suggesting the R–T instability mechanism was inapplicable to the solstitial asymmetry. Our results showed there were more zonally propagating atmospheric gravity waves (GWs) induced by thunderstorm events over the Hong Kong area in the summer solstice than the winter solstice. So, the solstitial asymmetry could be attributed to the seeding mechanism of thunderstorm-driven atmospheric GWs.


2021 ◽  
Vol 13 (3) ◽  
pp. 430
Author(s):  
Zhenfu Guan ◽  
Xiao Cheng ◽  
Yan Liu ◽  
Teng Li ◽  
Baogang Zhang ◽  
...  

The freshwater flux from icebergs into the Southern Ocean plays an important role in the global climate through its impact on the deep-water formation. Large uncertainties exist in the ice volume transported by Southern Ocean icebergs due to the sparse spatial and temporal coverage of observations, especially observations of ice thickness. The iceberg freeboard is a critical geometric parameter for measuring the thickness of an iceberg and then estimating its volume. This study developed a new, highly efficient shadow-height method to precisely measure the freeboard of various icebergs surrounded by sea ice using Landsat-8 Operational Land Imager 15-m bi-temporal panchromatic image shadows at low-solar-elevation angles. We evaluated and validated shadow length precision according to bi-temporal measurements and comparison with the measurements from the unmanned aerial vehicle. We determined freeboard precision according to shadow length precision and solar elevation angle. In our case study area, 4832 available freeboard measuring points with shadow length precision better than 2 pixels covered 376 icebergs with sizes ranging from 0.002 to 0.7 km² and with freeboard ranging from 2.3 to 83.4 m. At the solar elevation angles of 5.2°, the freeboard precision of 64.1% data could reach 1 m and 86.9% could reach 2 m. Our proposed method effectively filled in the data gap of existing freeboard measurement methods.


Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

In this paper, we consider a new system of absolute value variational inclusions. Some interesting and extensively problems such as absolute value equations, difference of monotone operators, absolute value complementarity problem and hemivariational inequalities as special case. It is shown that variational inclusions are equivalent to the fixed point problems. This alternative formulation is used to study the existence of a solution of the system of absolute value inclusions. New iterative methods are suggested and investigated using the resolvent equations, dynamical system and nonexpansive mappings techniques. Convergence analysis of these methods is investigated under monotonicity. Some special cases are discussed as applications of the main results.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6575-6584 ◽  
Author(s):  
Muhammad Noor ◽  
Khalida Noor ◽  
Sabah Iftikhar

In this paper, we consider a new class of harmonic convex functions, which is called p-harmonic convex function. Several new Hermite-Hadamard, midpoint, Trapezoidal and Simpson type inequalities for functions whose derivatives in absolute value are p-harmonic convex are obtained. Some special cases are discussed. The ideas and techniques of this paper may stimulate further research.


2020 ◽  
Author(s):  
Zhenfu Guan ◽  
Yan Liu

<p><strong>Abstract:</strong> The iceberg freeboard is an important geometric parameter for measuring the thickness of the iceberg and then estimating its volume. Based on the fact that the iceberg can cast elongated shadow on the surface of sea ice in winter, this paper proposes a method to measure the iceberg freeboard using shadow length and the predefined or estimated solar elevation angle. Three Landsat-8 panchromatic images are selected to test our method, with center solar elevation angle of respectively 5.43°, 7.49°and 11.01° on August 29, September 7, and 16 September in 2016. Shadow lengths of five isolated tabular icebergs are automatically extracted to calculate the freeboard height. For the accuracy assessment, we use the matching points at the different time as cross validation. The results show that the measurement error of shadow length is less than one pixel. When the sun elevation angle is lower than 11.01°, the Root Mean Square Error (RMSE) of the iceberg freeboard from the panchromatic 15 m image is less than 2.0 m, and the Mean Absolute Error (MAE) is less than 1.5 m. Such experiment shows that: under the angle of low solar elevation in winter, the landsat-8 panchromatic 15 m image can be used for high-precision measurement of the iceberg freeboard, and has the potential to measure the Antarctic iceberg freeboard in large scale.</p><p><strong>Key </strong><strong>words:</strong> Antarctic, icebergs, freeboard, shadow altimetry, Landsat-8</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document