Study of the growth and interface engineering of dense/porous SiN_x optical coatings by real-time spectroscopic ellipsometry

Author(s):  
Aram Amassian ◽  
Richard Vernhes ◽  
Jolanta Klemberg-Sapieha ◽  
Patrick Desjardins ◽  
Ludvik Martinu
2000 ◽  
Vol 619 ◽  
Author(s):  
Y. Gao ◽  
A.H. Mueller ◽  
E.A. Irene ◽  
O. Auciello ◽  
A.R. Krauss ◽  
...  

ABSTRACTAn in situ study of barrier layers using spectroscopic ellipsometry (SE) and Time-of-Flight (ToF) mass spectroscopy of recoiled ions (MSRI) is presented. First the formation of copper silicides has been observed by real-time SE and in situ MSRI in annealed Cu/Si samples. Second TaSiN films as barrier layers for copper interconnects were investigated. Failure of the TaSiN layers in Cu/TaSiN/Si samples was detected by real-time SE during annealing and confirmed by in situ MSRI. The effect of nitrogen concentration on TaSiN film performance as a barrier was also examined. The stability of both TiN and TaSiN films as barriers for electrodes for dynamic random access memory (DRAM) devices has been studied. It is shown that a combination of in situ SE and MSRI can be used to monitor the evolution of barrier layers and detect the failure of barriers in real-time.


2000 ◽  
Vol 609 ◽  
Author(s):  
Hiroyuki Fujiwara ◽  
Yasutake Toyoshima ◽  
Michio Kondo ◽  
Akihisa Matsuda

ABSTRACTWe have characterized a-Si:H initial layers for μc-Si:H nucleation by real time spectroscopic ellipsometry (SE) and infrared attenuated total reflection spectroscopy (ATR) to investigate the μc-Si:H formation mechanism. By performing Ar plasma treatment of a-Si:H layers, we confirmed a presence of a 2 monolayer thick sub-surface in a-Si:H layers. In the a-Si:H sub-surface that leads to the μc-Si:H nucleation, an important peak at ∼1937 cm−1 assigned to the SiHn complex was found in the ATR spectra. From H2 plasma treatment experiments, we proposed that this SiHn complex is formed by H insertion into strained Si-Si bonds. The SiHn complex formed in the a-Si:H sub-surface showed a clear relationship with the μc-Si:H nucleation. From these results, we conclude that the μc-Si:H nucleation occurs by the formation of the chemically active and flexible SiHn complexes in the 2 monolayer thick a-Si:H sub-surface.


2017 ◽  
Vol 421 ◽  
pp. 651-655 ◽  
Author(s):  
M. Magnozzi ◽  
F. Bisio ◽  
M. Canepa

2011 ◽  
Author(s):  
Yit Sung Ngo ◽  
Arthur Tay ◽  
Zhong Ping Fang

2003 ◽  
Vol 762 ◽  
Author(s):  
A. S. Ferlauto ◽  
G. M. Ferreira ◽  
R.J. Koval ◽  
J.M. Pearce ◽  
C.R. Wronski ◽  
...  

AbstractThe ability to characterize the phase of the intrinsic (i) layers incorporated into amorphous silicon [a-Si:H] and microcrystalline silicon [μc-Si:H] thin film solar cells is critically important for cell optimization. In our research, a new method has been developed to extract the thickness evolution of the μc-Si:H volume fraction in mixed phase amorphous + microcrystalline silicon [(a+μc)-Si:H] i-layers. This method is based on real time spectroscopic ellipsometry measurements performed during plasma-enhanced chemical vapor deposition of the films. In the analysis, the thickness at which crystallites first nucleate from the a-Si:H phase can be estimated, as well as the nucleation density and microcrystallite cone angle. The results correlate well with structural and solar cell measurements.


Sign in / Sign up

Export Citation Format

Share Document