Anisotropy of DNA Molecule Detection and Enhancement by GaN Based Electronic Sensor

2021 ◽  
Author(s):  
Tiankun Wang ◽  
Sha Shiong Ng
Author(s):  
Masako Osumi ◽  
Misuzu Nagano ◽  
Hiroko Kazama

We have found that microbodies appeared profusely together with a remarkable increase in catalase activity in normal alkane-grown cells of hydrocarbon-utilizing Candida yeasts, and that the microbodies multiplied by division in these cells. These features of Candida yeasts seem to provide a useful model system for studies on the biogenesis of the microbody. Subsequently, we have succeeded in isolation of Candida microbodies in an apparently native state, as judged biochemically and morphologically. The presence of DNA in the purified microbody fraction thus obtained was proved by the diphenylamine method. DNA molecule of about 15 urn in contour length was released from an isolated microbody. The physicochemical analyses of the microbody DNA revealed that its buoyant density differed from nuclear and mitochondrial DNAs. All these results lead us to the possibility that there is a novel type of DNA in microbodies.


Author(s):  
Mark Hannibal ◽  
Jacob Varkey ◽  
Michael Beer

Workman and Langmore have recently proposed a procedure for isolating particular chromatin fragments. The method requires restriction endonuclease cutting of the chromatin and a probe, their digestion with two exonucleases which leave complimentary single strand termini and low temperature hybridization of these. We here report simple electron microscopic monitoring of the four reactions involved.Our test material was ϕX-174 RF DNA which is cut once by restriction endonuclease Xho I. The conversion of circles to linear molecules was followed in Kleinschmidt spreads. Plate I shows a circular and a linear DNA molecule. The rate of cutting is shown in Figure 1.After completion of the endonuclease cutting, one portion of the DNA was treated with exonuclease III, an enzyme known to digest the 3' terminals of double helical DNA. Aliquots when examined in the electron microscope reveal a decreasing length of double helix and increasing bushes at the ends.


Author(s):  
P. Serwer

The genome of bacteriophage T7 is a duplex DNA molecule packaged in a space whose volume has been measured to be 2.2 x the volume of the B form of T7 DNA. To help determine the mechanism for packaging this DNA, the configuration of proteins inside the phage head has been investigated by electron microscopy. A core which is roughly cylindrical in outline has been observed inside the head of phage T7 using three different specimen preparation techniques.When T7 phage are treated with glutaraldehyde, DNA is ejected from the head often revealing an internal core (dark arrows in Fig. 1). When both the core and tail are present in a particle, the core appears to be coaxial with the tail. Core-tail complexes sometimes dislodge from their normal location and appear attached to the outside of a phage head (light arrow in Fig. 1).


2005 ◽  
Vol 345 (1-2) ◽  
pp. 173-184 ◽  
Author(s):  
J NETO ◽  
R DICKMAN ◽  
O MESQUITA

Genetics ◽  
1968 ◽  
Vol 60 (4) ◽  
pp. 681-684
Author(s):  
Andrew J Darlington ◽  
Walter F Bodmer

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ran Zhao ◽  
Yanqing Liu ◽  
Hua Tian

Abstract Background Soft tissue balancing is essential for the success of total knee arthroplasty (TKA) and is mainly dependent on surgeon-defined assessment (SDA) or a gap-balancer (GB). However, an electronic sensor has been developed to objectively measure the gap pressure. This study aimed to evaluate the accuracy of soft tissue balancing using SDA and GB compared with a sensor. Methods Forty-eight patients undergoing TKA (60 knees) were prospectively enrolled. Soft tissue balancing was sequentially performed using SDA, a GB, and an electronic sensor. We compared the SDA, GB, and sensor data to calculate the sensitivity, specificity, and accuracy at 0°, 45°, 90°, and 120° flexion. Cumulative summation (CUSUM) analysis was performed to assess the surgeon’s performance during the sensor introductory phase. Results The sensitivity of SDA was 63.3%, 68.3%, 80.0%, and 80.0% at 0°, 45°, 90°, and 120°, respectively. The accuracy of the GB compared with sensor data was 76.7% and 71.7% at 0° and 90°, respectively. Cohen’s kappa coefficient for the accuracy of the GB was 0.406 at 0° (moderate agreement) and 0.227 at 90° (fair agreement). The CUSUM 0° line achieved good prior performance at case 45, CUSUM 90° and 120° showed a trend toward good prior performance, while CUSUM 45° reached poor prior performance at case 8. Conclusion SDA was a poor predictor of knee balance. GB improved the accuracy of soft tissue balancing, but was still less accurate than the sensor, particularly for unbalanced knees. SDA improved with ongoing use of the sensor, except at 45° flexion.


Pramana ◽  
2003 ◽  
Vol 61 (2) ◽  
pp. 353-360
Author(s):  
Haijun Zhou ◽  
Yang Zhang ◽  
Zhang-Can Ou-Yang

Sign in / Sign up

Export Citation Format

Share Document