scholarly journals Length control of metal particles containing trajectories generated by metal sphere movement and elucidation of the relationship between metal sphere speed and metal addiction

2020 ◽  
Vol 10 (4) ◽  
pp. 1105
Author(s):  
Nobuyasu Nishioka ◽  
Hirofumi Hidai ◽  
Souta Matsusaka ◽  
Akira Chiba ◽  
Noboru Morita
1999 ◽  
Vol 13 (27) ◽  
pp. 969-976 ◽  
Author(s):  
R. A. SEROTA ◽  
B. GOODMAN

We evaluate the electric dipole absorption in small conducting particles in a longitudinal electric field, taking into account the Fermi–Thomas screening, and analyze the relationship between the classical and quantum limits.


Author(s):  
Hongpeng Zhang ◽  
Wen Huang ◽  
Junwei Jin ◽  
Li Guo ◽  
Dongqing Li

Metal wear debris is an important component of oil particle contamination and is also an essential information carrier in hydraulic oil. Based on inductive Coulter counting principle, a microfluidic device to detect wear debris in oil is presented. The proposed device has the advantage that in theory the distance between wear particle in oil and an embedded coil is 0, which can greatly improve the sensitivity of detection. The relationship between coil parameters and inductive change of a coil is analyzed through the related experimental statistics. The result indicates it can distinguish effectively ferrous and nonferrous metal particles in oil, and the size of 19 μm iron particles and 40 μm copper particles can be detected.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kuo-Hsiung Tseng ◽  
Juei-Long Chiu ◽  
Heng-Lin Lee ◽  
Chih-Yu Liao ◽  
Hong-Shiou Lin ◽  
...  

This study selected silver, copper, and titanium as the research objects to explore the relationship between nanofluids properties and electrical discharge machining (EDM) processes. Regarding the products, UV-visible spectroscopy (UV-Vis) was applied to measure the concentration distribution of nanofluids; zeta-size analysis is applied for measuring nanometal particles’ Zeta-Potential and the size distribution of metallic particles in the fluid. Finally, various instruments, including scanning electron microscope (SEM), were applied to observe the shape, size, and composition ratio of metal particles after processing. According to the experimental results, the control of the discharge pulse time, in addition to affecting the concentration of metallic liquid and temperature in the process, affects the size of the metal particles after the process. As the resistivity of silver and copper is very low, at about15×10-9 Ω·m, ifTONis set to between 10~50 μs, good preparation efficiency can be obtained. The resistivity of titanium is420×10-9 Ω·m, which is much larger than that of silver or copper. Hence,TONshould be set to approximately 100 μs to achieve a good discharge success rate.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thomas Parr

Abstract This commentary focuses upon the relationship between two themes in the target article: the ways in which a Markov blanket may be defined and the role of precision and salience in mediating the interactions between what is internal and external to a system. These each rest upon the different perspectives we might take while “choosing” a Markov blanket.


2019 ◽  
Vol 42 ◽  
Author(s):  
Paul Benjamin Badcock ◽  
Axel Constant ◽  
Maxwell James Désormeau Ramstead

Abstract Cognitive Gadgets offers a new, convincing perspective on the origins of our distinctive cognitive faculties, coupled with a clear, innovative research program. Although we broadly endorse Heyes’ ideas, we raise some concerns about her characterisation of evolutionary psychology and the relationship between biology and culture, before discussing the potential fruits of examining cognitive gadgets through the lens of active inference.


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document