Atomic Emission of Chlorine: Spectra from 200 to 900 nm by Sealed Inductively Coupled Plasma-Atomic Emission Spectroscopy

1994 ◽  
Vol 48 (3) ◽  
pp. 382-386 ◽  
Author(s):  
Tracey Jacksier ◽  
Ramon M. Barnes

Eighty-seven atomic chlorine lines and chlorine molecular spectra emitted in the 200–900 nm wavelength range are identified in a pure chlorine discharge generated at atmospheric pressure in a sealed inductively coupled plasma. Only small quantities of chlorine are needed for spectral evaluation because the flow rate is typically less than 20 mL/min.

1994 ◽  
Vol 48 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Tracey Jacksier ◽  
Ramon M. Barnes

The emission spectra of pure xenon, krypton, and neon are reported over the spectral range of 200 to 900 nm from an enclosed inductively coupled plasma discharge operated at atmospheric pressure and 350 W.


2021 ◽  
Vol 22 (4) ◽  
pp. 1874
Author(s):  
Giarita Ferraro ◽  
Alessandro Pratesi ◽  
Damiano Cirri ◽  
Paola Imbimbo ◽  
Daria Maria Monti ◽  
...  

Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.


Sign in / Sign up

Export Citation Format

Share Document