scholarly journals The Genetic Basis of Thermal Reaction Norm Evolution in Lab and Natural Phage Populations

PLoS Biology ◽  
2006 ◽  
Vol 4 (7) ◽  
pp. e201 ◽  
Author(s):  
Jennifer L Knies ◽  
Rima Izem ◽  
Katie L Supler ◽  
Joel G Kingsolver ◽  
Christina L Burch
2016 ◽  
Vol 9 (9) ◽  
pp. 1156-1164 ◽  
Author(s):  
Luisa Listmann ◽  
Maxime LeRoch ◽  
Lothar Schlüter ◽  
Mridul K. Thomas ◽  
Thorsten B. H. Reusch

2021 ◽  
Vol 8 ◽  
Author(s):  
Peter von Dassow ◽  
Paula Valentina Muñoz Farías ◽  
Sarah Pinon ◽  
Esther Velasco-Senovilla ◽  
Simon Anguita-Salinas

The cosmopolitan phytoplankter Emiliania huxleyi contrasts with its closest relatives that are restricted to narrower latitudinal bands, making it interesting for exploring how alternative outcomes in phytoplankton range distributions arise. Mitochondrial and chloroplast haplogroups within E. huxleyi are shared with their closest relatives: Some E. huxleyi share organelle haplogroups with Gephyrocapsa parvula and G. ericsonii which inhabit lower latitudes, while other E. huxleyi share organelle haplogroups with G. muellerae, which inhabit high latitudes. We investigated whether the phylogeny of E. huxleyi organelles reflects environmental gradients, focusing on the Southeast Pacific where the different haplogroups and species co-occur. There was a high congruence between mitochondrial and chloroplast haplogroups within E. huxleyi. Haplogroup II of E. huxleyi is negatively associated with cooler less saline waters, compared to haplogroup I, both when analyzed globally and across temporal variability at the small special scale of a center of coastal upwelling at 30° S. A new mitochondrial haplogroup Ib detected in coastal Chile was associated with warmer waters. In an experiment focused on inter-species comparisons, laboratory-determined thermal reaction norms were consistent with latitudinal/thermal distributions of species, with G. oceanica exhibiting warm thermal optima and tolerance and G. muellerae exhibiting cooler thermal optima and tolerances. Emiliania huxleyi haplogroups I and II tended to exhibit a wider thermal niche compared to the other Gephyrocapsa, but no differences among haplogroups within E. huxleyi were found. A second experiment, controlling for local adaptation and time in culture, found a significant difference between E. huxleyi haplogroups. The difference between I and II was of the expected sign, but not the difference between I and Ib. The differences were small (≤1°C) compared to differences reported previously within E. huxleyi by local adaptation and even in-culture evolution. Haplogroup Ib showed a narrower thermal niche. The cosmopolitanism of E. huxleyi might result from both wide-spread generalist phenotypes and specialist phenotypes, as well as a capacity for local adaptation. Thermal reaction norm differences can well explain the species distributions but poorly explain distributions among mitochondrial haplogroups within E. huxleyi. Perhaps organelle haplogroup distributions reflect historical rather than selective processes.


2010 ◽  
Vol 278 (1703) ◽  
pp. 313-320 ◽  
Author(s):  
David Berger ◽  
Magne Friberg ◽  
Karl Gotthard

Genetic trade-offs such as between generalist–specialist strategies can be masked by changes in compensatory processes involving energy allocation and acquisition which regulation depends on the state of the individual and its ecological surroundings. Failure to account for such state dependence may thus lead to misconceptions about the trade-off structure and nature of constraints governing reaction norm evolution. Using three closely related butterflies, we first show that foraging behaviours differ between species and change remarkably throughout ontogeny causing corresponding differences in the thermal niches experienced by the foraging larvae. We further predicted that thermal reaction norms for larval growth rate would show state-dependent variation throughout development as a result of selection for optimizing feeding strategies in the respective foraging niches of young and old larvae. We found substantial developmental plasticity in reaction norms that was species-specific and reflected the different ontogenetic niche shifts. Any conclusions regarding constraints on performance curves or species-differentiation in thermal physiology depend on when reaction norms were measured. This demonstrates that standardized estimates at single points in development, or in general, allow variation in only one ecological dimension, may sometimes provide incomplete information on reaction norm constraints.


2017 ◽  
Vol 16 (2) ◽  
pp. 172-179 ◽  
Author(s):  
Jonathan Monsinjon ◽  
Imed Jribi ◽  
Abdulmaula Hamza ◽  
Atef Ouerghi ◽  
Yakup Kaska ◽  
...  

2021 ◽  
Author(s):  
Marta A. Santos ◽  
Ana Carromeu-Santos ◽  
Ana S. Quina ◽  
Mauro Santos ◽  
Margarida Matos ◽  
...  

AbstractAdaptive evolution is key in mediating responses to climate change. Such evolution will expectedly lead to changes in the populations’ thermal reaction norm and improve their ability to cope with stressful conditions. Conversely, constraints of different nature might limit the adaptive response. Here, we test these expectations by performing a real-time evolution experiment in historically differentiated Drosophila subobscura populations. We address the phenotypic changes of flies evolving for nine generations in a daily fluctuating environment with average constant temperature, or a warming environment with increasing average and amplitude temperature across generations. Our results showed that (1) evolution under a global warming scenario has not led, so far, to a noticeable change in the thermal response; (2) historical background appears to be affecting the responses of populations under the warming environment, particularly at higher temperatures; (3) thermal reaction norms are trait-dependent: while lifelong exposure to low temperature decreases fecundity and productivity but not viability, high temperature causes negative transgenerational effects on productivity and viability, even though fecundity remains high. These findings raise concerns about the short-term efficiency of adaptive responses to the current changing climate.


2020 ◽  
Author(s):  
Erik I. Svensson ◽  
Miguel Gomez-Llano ◽  
John T. Waller

AbstractClimate change affects organisms worldwide with profound ecological and evolutionary consequences, often increasing population extinction risk. Climatic factors can increase the strength, variability or direction of natural selection on phenotypic traits, potentially driving adaptive evolution. Phenotypic plasticity in relation to temperature can allow organisms to maintain fitness in response to increasing temperatures, thereby “buying time” for subsequent genetic adaptation and promoting evolutionary rescue. Although many studies have shown that organisms respond plastically to increasing temperatures, it is unclear if such thermal plasticity is adaptive. Moreover, we know little about how natural and sexual selection operate on thermal reaction norms reflecting such plasticity. Here, we investigate how natural and sexual selection shape phenotypic plasticity in two congeneric and phenotypically similar sympatric insect species. We show that the thermal optima for longevity and mating success differ, suggesting temperature-dependent trade-offs between survival and reproduction. Males in these species have similar thermal reaction norm slopes but have diverged in baseline body temperature (intercepts), being higher for the more northern species. Natural selection favoured reduced thermal reaction norm slopes at high ambient temperatures, suggesting that the current level of thermal plasticity is maladaptive in the context of anthropogenic climate change and that selection now promotes thermal canalization and robustness. Our results show that ectothermic animals also at high latitudes can suffer from overheating and challenge the common view of phenotypic plasticity as being beneficial in harsh and novel environments.Significance StatementOrganisms are increasingly challenged by increasing temperatures due to climate change. In insects, body temperatures are strongly affected by ambient temperatures, and insects are therefore expected to suffer increasingly from heat stress, potentially reducing survival and reproductive success leading to elevated extinction risks. We investigated how ambient temperature affected fitness in two insect species in the temperate zone. Male and female survivorship benefitted more from low temperatures than did reproductive success, which increased with higher temperatures, revealing a thermal conflict between fitness components. Male body temperature plasticity reduced survival, and natural and sexual selection operated on such thermal plasticity. Our results reveal the negative consequences of thermal plasticity and show that these insects have limited ability to buffer heat stress.


2020 ◽  
Vol 8 ◽  
Author(s):  
Jens Joschinski ◽  
Dries Bonte

Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness variance), whereas predictable environments favor phenotypic plasticity. However, entirely predictable or entirely unpredictable conditions are rarely found in nature. Intermediate strategies are required when the time lag between information sensing and phenotype induction is large (e.g., transgenerational plasticity) and when cues are only partially predictive of future conditions. Nevertheless, current theory regards plasticity and bet-hedging as distinct entities. We here develop a unifying framework: based on traits with binary outcomes like seed germination or diapause incidence we clarify that diversified bet-hedging (risk-spreading among one’s offspring) and transgenerational plasticity are mutually exclusive strategies, arising from opposing changes in reaction norms (allocating phenotypic variance among or within environments). We further explain the relationship of this continuum with arithmetic mean maximization vs. conservative bet-hedging (a risk-avoidance strategy), and canalization vs. phenotypic variance in a three-dimensional continuum of reaction norm evolution. We discuss under which scenarios costs and limits may constrain the evolution of reaction norm shapes.


2020 ◽  
Author(s):  
Cristina Alcaide ◽  
Josep Sardanyés ◽  
Santiago F. Elena ◽  
Pedro Gómez

AbstractThe emergence of viral diseases in plant crops hamper the sustainability of food production, and this may be boosted by global warming. Concurrently, mixed viral infections are becoming common in plants, of which epidemiology are unpredictable due to within-host virus-virus interactions. However, the extent in which the combined effect of variations in the abiotic components of the plant ecological niche (e.g., temperature) and the prevalence of mixed infections (i.e., within-host interactions among viruses) affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections, and show that two individual strains of pepino mosaic virus (PepMV) coexisted in a temperature-dependent continuum between neutral and antagonistic interactions in tomato plants. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. Mathematical modeling allowed us to asses a thermal reaction norm for both strains, which indicated that viral replication rates were increased along with increasing temperature in mixed infections, with a remarkable strain-dependent effect. These results suggest that the growth temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses co-infecting a host. This research provides insights into the effect that climate change will have on the evolutionary dynamics of viral populations.


Sign in / Sign up

Export Citation Format

Share Document