scholarly journals mbkmeans: Fast clustering for single cell data using mini-batch k-means

2021 ◽  
Vol 17 (1) ◽  
pp. e1008625
Author(s):  
Stephanie C. Hicks ◽  
Ruoxi Liu ◽  
Yuwei Ni ◽  
Elizabeth Purdom ◽  
Davide Risso

Single-cell RNA-Sequencing (scRNA-seq) is the most widely used high-throughput technology to measure genome-wide gene expression at the single-cell level. One of the most common analyses of scRNA-seq data detects distinct subpopulations of cells through the use of unsupervised clustering algorithms. However, recent advances in scRNA-seq technologies result in current datasets ranging from thousands to millions of cells. Popular clustering algorithms, such as k-means, typically require the data to be loaded entirely into memory and therefore can be slow or impossible to run with large datasets. To address this problem, we developed the mbkmeans R/Bioconductor package, an open-source implementation of the mini-batch k-means algorithm. Our package allows for on-disk data representations, such as the common HDF5 file format widely used for single-cell data, that do not require all the data to be loaded into memory at one time. We demonstrate the performance of the mbkmeans package using large datasets, including one with 1.3 million cells. We also highlight and compare the computing performance of mbkmeans against the standard implementation of k-means and other popular single-cell clustering methods. Our software package is available in Bioconductor at https://bioconductor.org/packages/mbkmeans.

2020 ◽  
Author(s):  
Stephanie C. Hicks ◽  
Ruoxi Liu ◽  
Yuwei Ni ◽  
Elizabeth Purdom ◽  
Davide Risso

AbstractSingle-cell RNA-Sequencing (scRNA-seq) is the most widely used high-throughput technology to measure genome-wide gene expression at the single-cell level. One of the most common analyses of scRNA-seq data detects distinct subpopulations of cells through the use of unsupervised clustering algorithms. However, recent advances in scRNA-seq technologies result in current datasets ranging from thousands to millions of cells. Popular clustering algorithms, such as k-means, typically require the data to be loaded entirely into memory and therefore can be slow or impossible to run with large datasets. To address this problem, we developed the mbkmeans R/Bioconductor package, an open-source implementation of the mini-batch k-means algorithm. Our package allows for on-disk data representations, such as the common HDF5 file format widely used for single-cell data, that do not require all the data to be loaded into memory at one time. We demonstrate the performance of the mbkmeans package using large datasets, including one with 1.3 million cells. We also highlight and compare the computing performance of mbkmeans against the standard implementation of k - means. Our software package is available in Bioconductor at https://bioconductor.org/packages/mbkmeans.


2022 ◽  
Author(s):  
Jiyuan Fang ◽  
Cliburn Chan ◽  
Kouros Owzar ◽  
Liuyang Wang ◽  
Diyuan Qin ◽  
...  

Single-cell RNA-sequencing (scRNA-seq) technology allows us to explore cellular heterogeneity in the transcriptome. Because most scRNA-seq data analyses begin with cell clustering, its accuracy considerably impacts the validity of downstream analyses. Although many clustering methods have been developed, few tools are available to evaluate the clustering "goodness-of-fit" to the scRNA-seq data. In this paper, we propose a new Clustering Deviation Index (CDI) that measures the deviation of any clustering label set from the observed single-cell data. We conduct in silico and experimental scRNA-seq studies to show that CDI can select the optimal clustering label set. Particularly, CDI also informs the optimal tuning parameters for any given clustering method and the correct number of cluster components.


2021 ◽  
Author(s):  
Ziheng Zou ◽  
Kui Hua ◽  
Xuegong Zhang

AbstractClustering is a key step in revealing heterogeneities in single-cell data. Cell heterogeneity can be explored at different resolutions and the resulted varying cell states are inherently nested. However, most existing single-cell clustering methods output a fixed number of clusters without the hierarchical information. Classical hierarchical clustering provides dendrogram of cells, but cannot scale to large datasets due to the high computational complexity. We present HGC, a fast Hierarchical Graph-based Clustering method to address both problems. It combines the advantages of graph-based clustering and hierarchical clustering. On the shared nearest neighbor graph of cells, HGC constructs the hierarchical tree with linear time complexity. Experiments showed that HGC enables multiresolution exploration of the biological hierarchy underlying the data, achieves state-of-the-art accuracy on benchmark data, and can scale to large datasets. HGC is freely available for academic use at https://www.github.com/XuegongLab/[email protected], [email protected]


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ryan B. Patterson-Cross ◽  
Ariel J. Levine ◽  
Vilas Menon

Abstract Background Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems. Results Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple “robustness score” for each of these clusters, facilitating the assessment of cluster quality. Conclusion chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Zhao ◽  
Zhao-Yu Fang ◽  
Cui-Xiang Lin ◽  
Chao Deng ◽  
Yun-Pei Xu ◽  
...  

In recent years, the application of single cell RNA-seq (scRNA-seq) has become more and more popular in fields such as biology and medical research. Analyzing scRNA-seq data can discover complex cell populations and infer single-cell trajectories in cell development. Clustering is one of the most important methods to analyze scRNA-seq data. In this paper, we focus on improving scRNA-seq clustering through gene selection, which also reduces the dimensionality of scRNA-seq data. Studies have shown that gene selection for scRNA-seq data can improve clustering accuracy. Therefore, it is important to select genes with cell type specificity. Gene selection not only helps to reduce the dimensionality of scRNA-seq data, but also can improve cell type identification in combination with clustering methods. Here, we proposed RFCell, a supervised gene selection method, which is based on permutation and random forest classification. We first use RFCell and three existing gene selection methods to select gene sets on 10 scRNA-seq data sets. Then, three classical clustering algorithms are used to cluster the cells obtained by these gene selection methods. We found that the gene selection performance of RFCell was better than other gene selection methods.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunxiang Wang ◽  
Xin Gao ◽  
Juntao Liu

Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data. Results We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3. Conclusion The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.


2020 ◽  
Vol 18 (04) ◽  
pp. 2040005
Author(s):  
Ruiyi Li ◽  
Jihong Guan ◽  
Shuigeng Zhou

Clustering analysis has been widely applied to single-cell RNA-sequencing (scRNA-seq) data to discover cell types and cell states. Algorithms developed in recent years have greatly helped the understanding of cellular heterogeneity and the underlying mechanisms of biological processes. However, these algorithms often use different techniques, were evaluated on different datasets and compared with some of their counterparts usually using different performance metrics. Consequently, there lacks an accurate and complete picture of their merits and demerits, which makes it difficult for users to select proper algorithms for analyzing their data. To fill this gap, we first do a review on the major existing scRNA-seq data clustering methods, and then conduct a comprehensive performance comparison among them from multiple perspectives. We consider 13 state of the art scRNA-seq data clustering algorithms, and collect 12 publicly available real scRNA-seq datasets from the existing works to evaluate and compare these algorithms. Our comparative study shows that the existing methods are very diverse in performance. Even the top-performance algorithms do not perform well on all datasets, especially those with complex structures. This suggests that further research is required to explore more stable, accurate, and efficient clustering algorithms for scRNA-seq data.


2019 ◽  
Author(s):  
Kyungmin Ahn ◽  
Hironobu Fujiwara

AbstractBackgroundIn single-cell RNA-sequencing (scRNA-seq) data analysis, a number of statistical tools in multivariate data analysis (MDA) have been developed to help analyze the gene expression data. This MDA approach is typically focused on examining discrete genomic units of genes that ignores the dependency between the data components. In this paper, we propose a functional data analysis (FDA) approach on scRNA-seq data whereby we consider each cell as a single function. To avoid a large number of dropouts (zero or zero-closed values) and reduce the high dimensionality of the data, we first perform a principal component analysis (PCA) and assign PCs to be the amplitude of the function. Then we use the index of PCs directly from PCA for the phase components. This approach allows us to apply FDA clustering methods to scRNA-seq data analysis.ResultsTo demonstrate the robustness of our method, we apply several existing FDA clustering algorithms to the gene expression data to improve the accuracy of the classification of the cell types against the conventional clustering methods in MDA. As a result, the FDA clustering algorithms achieve superior accuracy on simulated data as well as real data such as human and mouse scRNA-seq data.ConclusionsThis new statistical technique enhances the classification performance and ultimately improves the understanding of stochastic biological processes. This new framework provides an essentially different scRNA-seq data analytical approach, which can complement conventional MDA methods. It can be truly effective when current MDA methods cannot detect or uncover the hidden functional nature of the gene expression dynamics.


2019 ◽  
Author(s):  
Magdalena E Strauss ◽  
Paul DW Kirk ◽  
John E Reid ◽  
Lorenz Wernisch

AbstractMotivationMany methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters.ResultsThe proposed method, GPseudoClust, is a novel approach that jointly infers pseudotem-poral ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with nonparametric Bayesian clustering methods, efficient MCMC sampling, and novel subsampling strategies which aid computation. We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings.AvailabilityAn implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/[email protected] informationSupplementary materials are available.


2021 ◽  
Author(s):  
James Anibal ◽  
Alexandre Day ◽  
Erol Bahadiroglu ◽  
Liam O'Neill ◽  
Long Phan ◽  
...  

Data clustering plays a significant role in biomedical sciences, particularly in single-cell data analysis. Researchers use clustering algorithms to group individual cells into populations that can be evaluated across different levels of disease progression, drug response, and other clinical statuses. In many cases, multiple sets of clusters must be generated to assess varying levels of cluster specificity. For example, there are many subtypes of leukocytes (e.g. T cells), whose individual preponderance and phenotype must be assessed for statistical/functional significance. In this report, we introduce a novel hierarchical density clustering algorithm (HAL-x) that uses supervised linkage methods to build a cluster hierarchy on raw single-cell data. With this new approach, HAL-x can quickly predict multiple sets of labels for immense datasets, achieving a considerable improvement in computational efficiency on large datasets compared to existing methods. We also show that cell clusters generated by HAL-x yield near-perfect F1-scores when classifying different clinical statuses based on single-cell profiles. Our hierarchical density clustering algorithm achieves high accuracy in single cell classification in a scalable, tunable and rapid manner. We make HAL-x publicly available at: https://pypi.org/project/hal-x/


Sign in / Sign up

Export Citation Format

Share Document