scholarly journals DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks

2021 ◽  
Vol 17 (2) ◽  
pp. e1008730
Author(s):  
Pablo Rodríguez-Mier ◽  
Nathalie Poupin ◽  
Carlo de Blasio ◽  
Laurent Le Cam ◽  
Fabien Jourdan

The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.

2020 ◽  
Author(s):  
Pablo Rodríguez-Mier ◽  
Nathalie Poupin ◽  
Carlo de Blasio ◽  
Laurent Le Cam ◽  
Fabien Jourdan

AbstractThe correct identification of metabolic activity in tissues or cells under different environmental or genetic conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific organism and condition, containing only the reactions predicted to be active in such context. A major limitation of this approach is that the available information does not generally allow for an unambiguous characterization of the corresponding optimal metabolic sub-network, i.e., there are usually many different sub-network that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic state. In this work, we formalize the problem of enumeration of optimal metabolic networks, we implement a set of techniques that can be used to enumerate optimal networks, and we introduce DEXOM, a novel strategy for diversity-based extraction of optimal metabolic networks. Instead of enumerating the whole space of optimal metabolic networks, which can be computationally intractable, DEXOM samples solutions from the set of optimal metabolic sub-networks maximizing diversity in order to obtain a good representation of the possible metabolic state. We evaluate the solution diversity of the different techniques using simulated and real datasets, and we show how this method can be used to improve in-silico gene essentiality predictions in Saccharomyces Cerevisiae using diversity-based metabolic network ensembles. Both the code and the data used for this research are publicly available on GitHub1.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi179-vi179
Author(s):  
Daniel Merk ◽  
Sophie Hirsch ◽  
Foteini Tsiami ◽  
Bianca Walter ◽  
Lara Haeusser ◽  
...  

Abstract Brain tumors are the leading cause of cancer-related deaths in children. Embryonal brain tumors including medulloblastoma and atypical teratoid rhabdoid tumors (ATRTs) account for 15% of all primary brain and CNS tumors under the age of 14 years, with ATRTs being most prevalent in infants. Despite intensive research efforts, survival estimates for ATRT patients stay relatively low as compared to other tumor entities with a median survival of around 17 months. We here describe genome-wide CRISPR/Cas9 knockout screens in combination with small-molecule drug assays to identify targetable vulnerabilities in ATRTs. Based on functional genomic screening revealing ATRT context-specific genetic vulnerabilities (n = 671 genes), we successfully generated a small-molecule library that shows preferential activity in ATRT cells as compared to a broad selection of other human cancer cell lines. Of note, none of these drugs differentially affect ATRT cells from distinct molecular subgroups, suggesting that top candidate inhibitors might serve as pan-ATRT therapeutic avenues. CDK4/6 inhibitors, among the most potent drugs in our library, are capable of inhibiting tumor growth due to mutual exclusive dependency of ATRTs on either CDK4 or CDK6. Our approach might serve as a blueprint for fostering the identification of functionally-instructed therapeutic strategies in other incurable diseases beyond ATRT, whose genomic profiles also lack actionable alterations so far.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
IO Mondranondra ◽  
A Suedee ◽  
A Kijjoa ◽  
M Pinto ◽  
N Nazareth ◽  
...  

2018 ◽  
Author(s):  
James Leighton ◽  
Linda M. Suen ◽  
Makeda A. Tekle-Smith ◽  
Kevin S. Williamson ◽  
Joshua R. Infantine ◽  
...  

With an average GI50 value against the NCI panel of 60 human cancer cell lines of 0.12 nM, spongistatin 1 is among the most potent anti-proliferative agents ever discovered rendering it an attractive candidate for development as a payload for antibody-drug conjugates and other targeted delivery approaches. It is unavailable from natural sources and its size and complex stereostructure render chemical synthesis highly time- and resource-intensive, however, and its development requires more efficient and step-economical synthetic access. Using novel and uniquely enabling direct complex fragment coupling alkallyl- and crotylsilylation reactions, we have developed a 22-step synthesis of a rationally designed D-ring modified analog of spongistatin 1 that is equipotent with the natural product, and have used that synthesis to establish that the C(15) acetate may be replaced with a linker functional group-bearing ester with only minimal reductions in potency.<br><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document