scholarly journals DYF-4 regulates patched-related/DAF-6-mediated sensory compartment formation in C. elegans

PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009618
Author(s):  
Hui Hong ◽  
Huicheng Chen ◽  
Yuxia Zhang ◽  
Zhimao Wu ◽  
Yingying Zhang ◽  
...  

Coordination of neurite extension with surrounding glia development is critical for neuronal function, but the underlying molecular mechanisms remain poorly understood. Through a genome-wide mutagenesis screen in C. elegans, we identified dyf-4 and daf-6 as two mutants sharing similar defects in dendrite extension. DAF-6 encodes a glia-specific patched-related membrane protein that plays vital roles in glial morphogenesis. We cloned dyf-4 and found that DYF-4 encodes a glia-secreted protein. Further investigations revealed that DYF-4 interacts with DAF-6 and functions in a same pathway as DAF-6 to regulate sensory compartment formation. Furthermore, we demonstrated that reported glial suppressors of daf-6 could also restore dendrite elongation and ciliogenesis in both dyf-4 and daf-6 mutants. Collectively, our data reveal that DYF-4 is a regulator for DAF-6 which promotes the proper formation of the glial channel and indirectly affects neurite extension and ciliogenesis.

Author(s):  
Hui Hong ◽  
Huicheng Chen ◽  
Yuxia Zhang ◽  
Zhimao Wu ◽  
Yingying Zhang ◽  
...  

AbstractCoordination of neurite extension with surrounding glia development is critical for neuronal function, but the underlying molecular mechanisms remain poorly understood. Through a genome-wide mutagenesis screen in C. elegans, we identified dyf-4 and daf-6 as two mutants sharing similar defects in dendrite extension. DAF-6 encodes a glia-specific patched-related membrane protein that plays vital roles in glial morphogenesis. We cloned dyf-4 and found that DYF-4 encodes a glia-secreted extracellular protein. Intriguingly, DYF-4 colocalizes with DAF-6 along the glial channel. Further investigations revealed that DYF-4 directly interacts with DAF-6 and regulates its proper membrane localization. Notably, reported glial suppressors of daf-6 could also restore dendrite elongation and ciliogenesis in both dyf-4 and daf-6 mutants. Collectively, our data suggest that secreted DYF-4 likely acts as a novel ligand/regulator for the patched-related receptor DAF-6 which promotes the proper formation of the glial channel and indirectly affects neurite extension and ciliogenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Benjamin I. Laufer ◽  
J. Antonio Gomez ◽  
Julia M. Jianu ◽  
Janine M. LaSalle

Abstract Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


2021 ◽  
Author(s):  
Dingxia Feng ◽  
Zhiwei Zhai ◽  
Zhiyong Shao ◽  
Yi Zhang ◽  
Jo Anne Powell-Coffman

AbstractDuring development, homeostasis, and disease, organisms must balance responses that allow adaptation to low oxygen (hypoxia) with those that protect cells from oxidative stress. The evolutionarily conserved hypoxia-inducible factors are central to these processes, as they orchestrate transcriptional responses to oxygen deprivation. Here, we employ genetic strategies in C. elegans to identify stress-responsive genes and pathways that modulate the HIF-1 hypoxia-inducible factor and facilitate oxygen homeostasis. Through a genome-wide RNAi screen, we show that RNAi-mediated mitochondrial or proteasomal dysfunction increases the expression of hypoxia-responsive reporter Pnhr-57:GFP in C. elegans. Interestingly, only a subset of these effects requires hif-1. Of particular importance, we found that skn-1 RNAi increases the expression of hypoxia-responsive reporter Pnhr-57:GFP and elevates HIF-1 protein levels. The SKN-1/NRF transcription factor has been shown to promote oxidative stress resistance. We present evidence that the crosstalk between HIF-1 and SKN-1 is mediated by EGL-9, the prolyl hydroxylase that targets HIF-1 for oxygen-dependent degradation. Treatment that induces SKN-1, such as heat, increases expression of a Pegl-9:GFP reporter, and this effect requires skn-1 function and a putative SKN-1 binding site in egl-9 regulatory sequences. Collectively, these data support a model in which SKN-1 promotes egl-9 transcription, thereby inhibiting HIF-1. We propose that this interaction enables animals to adapt quickly to changes in cellular oxygenation and to better survive accompanying oxidative stress.


Author(s):  
Nana Matoba ◽  
Dan Liang ◽  
Huaigu Sun ◽  
Nil Aygün ◽  
Jessica C. McAfee ◽  
...  

AbstractBackgroundAutism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of three common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) using the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD.MethodsWe performed an association study on 6,222 case-pseudocontrol pairs from SPARK and meta-analyzed with a previous GWAS. We integrated gene regulatory annotations to map non-coding risk variants to their regulated genes. Further, we performed a massively parallel reporter assay (MPRA) to identify causal variant(s) within a novel risk locus.ResultsWe identified one novel GWS locus from the SPARK GWAS. The meta-analysis identified four significant loci, including an additional novel locus. We observed significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. The MPRA identified one variant at the novel locus with strong impacts on gene regulation (rs7001340), and expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and pre-natal brains.ConclusionsBy integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.


2019 ◽  
Vol 116 (12) ◽  
pp. 5653-5658 ◽  
Author(s):  
Lin Shao ◽  
Feng Xing ◽  
Conghao Xu ◽  
Qinghua Zhang ◽  
Jian Che ◽  
...  

Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.


2011 ◽  
Vol 2 (11) ◽  
pp. 918-939 ◽  
Author(s):  
Yinyan Sun ◽  
Peiguo Yang ◽  
Yuxia Zhang ◽  
Xin Bao ◽  
Jun Li ◽  
...  
Keyword(s):  
P Bodies ◽  

2019 ◽  
Author(s):  
Alexey A Shadrin ◽  
Sören Mucha ◽  
David Ellinghaus ◽  
Mary B Makarious ◽  
Cornelis Blauwendraat ◽  
...  

ABSTRACTWe aimed to identify shared genetic background between multiple system atrophy (MSA) and autoimmune diseases by using the conjFDR approach. Our study showed significant genetic overlap between MSA and inflammatory bowel disease and identified DENND1B, C7, and RSP04 loci, which are linked to significant changes in methylation or expression levels of adjacent genes. We obtained evidence of enriched heritability involving immune/digestive categories. Finally, an MSA mouse model showed dysregulation of the C7 gene in the degenerating midbrain compared to wildtype mice. The results identify novel molecular mechanisms and implicate immune and gut dysfunction in MSA pathophysiology.


Animals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 260 ◽  
Author(s):  
Bo Zhu ◽  
Qinghe Li ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
Jie Wen ◽  
...  

Presently, the heterophil-to-lymphocyte (H/L) ratio is being studied extensively as a disease resistance trait. Through intricate mechanisms to identify and destroy pathogenic microorganisms, heterophils play a pivotal role in the immune defense systems of avian species. To reveal the genetic basis and molecular mechanisms affecting the H/L ratio, phenotypic and H/L data from 1650 white feather chicken broilers were used in performing a genome-wide association study. A self-developed, chicken-specific 55K chip was used for heterophils, lymphocytes, and H/L classification, according to individual genomic DNA profiles. We identified five significant single nucleotide polymorphisms (SNPs) when the genome-wide significance threshold was set to 5% (p < 2.42 × 10−6). A total of 15 SNPs obtained seemingly significant levels (p < 4.84 × 10−5). Gene annotation indicated that CARD11 (Caspase recruitment domain family member 11), BRIX1 (Biogenesis of ribosomes BRX1), and BANP (BTG3 associated nuclear protein) play a role in H/L-associated cell regulation and potentially constitute candidate gene regions for cellular functions dependent on H/L ratios. These results lay the foundation for revealing the genetic basis of disease resistance and future marker-assisted selection for disease resistance.


Sign in / Sign up

Export Citation Format

Share Document