scholarly journals Germline soma communication mediated by gap junction proteins regulates epithelial morphogenesis

PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009685
Author(s):  
Aresh Sahu ◽  
Susnata Karmakar ◽  
Sudipta Halder ◽  
Gaurab Ghosh ◽  
Sayan Acharjee ◽  
...  

Gap junction (GJ) proteins, the primary constituents of GJ channels, are conserved determinants of patterning. Canonically, a GJ channel, made up of two hemi-channels contributed by the neighboring cells, facilitates transport of metabolites/ions. Here we demonstrate the involvement of GJ proteins during cuboidal to squamous epithelial transition displayed by the anterior follicle cells (AFCs) from Drosophila ovaries. Somatically derived AFCs stretch and flatten when the adjacent germline cells start increasing in size. GJ proteins, Innexin2 (Inx2) and Innexin4 (Inx4), functioning in the AFCs and germline respectively, promote the shape transformation by modulating calcium levels in the AFCs. Our observations suggest that alterations in calcium flux potentiate STAT activity to influence actomyosin-based cytoskeleton, possibly resulting in disassembly of adherens junctions. Our data have uncovered sequential molecular events underlying the cuboidal to squamous shape transition and offer unique insight into how GJ proteins expressed in the neighboring cells contribute to morphogenetic processes.

Author(s):  
Yi-Chia Huang ◽  
Kuan-Han Chen ◽  
Yu-Yang Chen ◽  
Liang-Hsuan Tsao ◽  
Tsung-Han Yeh ◽  
...  

Abstract During oogenesis, a group of specialized follicle cells, known as stretched cells, flatten drastically from cuboidal to squamous shape. While morphogenesis of epithelia is critical for organogenesis, genes and signaling pathways involved in this process remain to be revealed. In addition to formation of gap junctions for intercellular exchange of small molecules, gap junction proteins form channels or act as adaptor proteins to regulate various cellular behaviors. In invertebrates, gap junction proteins are Innexins. Knockdown of Innexin 2 but not other Innexins expressed in follicle cells attenuates stretched cell morphogenesis. Interestingly, blocking of gap junctions with an inhibitor carbenoxolone does not affect stretched cell morphogenesis, suggesting that Innexin 2 might control stretched cell flattening in a gap-junction-independent manner. An excessive level of βPS-Integrin encoded by myospheroid is detected in Innexin 2 mutant cells specifically during stretched cell morphogenesis. Simultaneous knockdown of Innexin 2 and myospheroid partially rescues the morphogenetic defect resulted from Innexin 2 knockdown. Furthermore, reduction of βPS-Integrin is sufficient to induce early stretched cell flattening. Taken together, our data suggest that βPS-Integrin acts downstream of Innexin 2 in modulating stretched cell morphogenesis.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769837 ◽  
Author(s):  
Lijun Ma ◽  
Hongli Yan ◽  
Hui Zhao ◽  
Jianmin Sun

Grainyhead-like 2 is a human homolog of Drosophila grainyhead. It inhibits epithelial-to-mesenchymal transition that is necessary for cell migration, and it is involved in neural tube closure, epithelial morphogenesis, and barrier formation during embryogenesis by regulation of the expression of cell junction proteins such as E-cadherin and vimentin. Cancer shares many common characters with development such as epithelial-to-mesenchymal transition. In addition to its important role in development, grainyhead-like 2 is implicated in carcinogenesis as well. However, the reports on grainyhead-like 2 in various cancers are controversial. Grainyhead-like 2 can act as either a tumor suppressor or an oncogene with the mechanisms not well elucidated. In this review, we summarized recent progress on grainyhead-like 2 in development and cancer in order to get an insight into the regulation network of grainyhead-like 2 and understand the roles of grainyhead-like 2 in various cancers.


2003 ◽  
Vol 160 (3) ◽  
pp. 433-449 ◽  
Author(s):  
Steven H. Myster ◽  
Robert Cavallo ◽  
Charles T. Anderson ◽  
Donald T. Fox ◽  
Mark Peifer

Cadherin–catenin complexes, localized to adherens junctions, are essential for cell–cell adhesion. One means of regulating adhesion is through the juxtamembrane domain of the cadherin cytoplasmic tail. This region is the binding site for p120, leading to the hypothesis that p120 is a key regulator of cell adhesion. p120 has also been suggested to regulate the GTPase Rho and to regulate transcription via its binding partner Kaiso. To test these hypothesized functions, we turned to Drosophila, which has only a single p120 family member. It localizes to adherens junctions and binds the juxtamembrane region of DE-cadherin (DE-cad). We generated null alleles of p120 and found that mutants are viable and fertile and have no substantial changes in junction structure or function. However, p120 mutations strongly enhance mutations in the genes encoding DE-cadherin or Armadillo, the β-catenin homologue. Finally, we examined the localization of p120 during embryogenesis. p120 localizes to adherens junctions, but its localization there is less universal than that of core adherens junction proteins. Together, these data suggest that p120 is an important positive modulator of adhesion but that it is not an essential core component of adherens junctions.


2009 ◽  
Vol 39 (3) ◽  
pp. 224-233 ◽  
Author(s):  
Sarit Anava ◽  
David Rand ◽  
Yael Zilberstein ◽  
Amir Ayali

Plant Science ◽  
2007 ◽  
Vol 173 (4) ◽  
pp. 446-457 ◽  
Author(s):  
Tsvika Keilin ◽  
Xuequn Pang ◽  
Jaganatha Venkateswari ◽  
Tamar Halaly ◽  
Omer Crane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document